Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.3.231

Evaluation of thermally and chemically reduced graphene oxide films as counter electrodes on dye-sensitized solar cells  

Rodriguez-Perez, Manuel (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
Villanueva-Cab, Julio (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
Pal, Umapada (Instituto de Fisica, Benemerita Universidad Autonoma de Puebla)
Publication Information
Advances in nano research / v.5, no.3, 2017 , pp. 231-244 More about this Journal
Abstract
Graphene oxide (GO) was prepared by modified Hummer's method to produce reduced graphene oxide (RGO) following standard thermal and chemical reduction processes. Prepared RGO colloids were utilized to fabricate RGO films over glass and FTO coated glass substrates through drop-coating. A systematic study was performed to evaluate the effect of reduction degree on the optical and electrical properties of the RGO film. We demonstrate that both the reduction process (thermal and chemical) produce RGO films of similar optical and electrical behaviors. However, the RGO films fabricated using chemically reduced GO colloid render better performance in dye sensitized solar cells (DSSCs), when they are used as counter electrodes (CEs). It has been demonstrated that RGO films of optimum thicknesses fabricated using RGO colloids prepared using lower concentration of hydrazine reducer have better catalytic performance in DSSCs due to a better catalytic interaction with redox couple. The better catalytic performance of the RGO films fabricated at optimal hydrazine concentration is associated to their higher available surface area and lower grain boundaries.
Keywords
graphene oxide; reduced graphene oxide; DSSC; graphe film;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Geng, J., Liu, L., Yang, S.B., Youn, S.-C., Kim, D.W., Lee, J.-S., Choi, J.-K. and Jung, H.-T. (2010), "A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension", J. Phys. Chem. C, 114(34), 14433-14440.   DOI
2 Gierz, I., Riedl, C., Starke, U., Ast, C.R. and Kern, K. (2008), "Atomic hole doping of graphene", Nano Lett., 8(12), 4603-4607.   DOI
3 Hummers, W.S. and Offeman, R.E. (1958), "Preparation of graphitic oxide", J. Am. Chem. Soc., 80(6), 1339-1339.   DOI
4 Ito, S., Chen, P., Comte, P., Nazeeruddin, M.K., Liska, P., Pechy, P. and Gratzel, M. (2007), "Fabrication of screen-printing pastes from $TiO_2$ powders for dye-sensitised solar cells", Prog. Photovoltaics, 15(7), 603-612.   DOI
5 Li, D., Muller, M.B., Gilje, S., Kaner, R.B. and Wallace, G.G. (2008), "Processable aqueous dispersions of graphene nanosheets", Nature Nanotech., 3(2), 101-105.   DOI
6 Long, D.H., Li, W., Ling, L.C., Miyawaki, J., Mochida, I. and Yoon, S.H. (2010), "Preparation of nitrogendoped graphene sheets by a combined chemical and hydrothermal reduction of graphene oxide", Langmuir, 26(20), 16096-16102.   DOI
7 Paredes, J.I., Villar-Rodil, S., Martinez-Alonso, A. and Tascon, J.M.D. (2008), "Graphene oxide dispersions in organic solvents", Langmuir, 24(19), 10560-10564.   DOI
8 Park, S. and Ruoff, R.S. (2009), "Chemical methods for the production of graphenes", Nat. Nano, 4(4), 217-224.   DOI
9 Park, S., An, J., Jung, I., Piner, R.D., An, S.J., Li, X., Velamakanni, A. and Ruoff, R.S. (2009), "Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents", Nano Lett., 9(4), 1593-1597.   DOI
10 Park, H., Rowehl, J.A., Kim, K.K., Bulovic, V. and Kong, J. (2010), "Doped graphene electrodes for organic solar cells", Nanotechnology, 21(50), 505204.   DOI
11 Park, S., Hu, Y., Hwang, J.O., Lee, E.-S., Casabianca, L.B., Cai, W., Potts, J.R., Ha, H.-W., Chen, S., Oh, J., Kim, S.O., Kim, Y.-H., Ishii, Y. and Ruoff, R.S. (2012), "Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping", Nature Commun., 3, 638.   DOI
12 Qiu, L., Zhang, H., Wang, W., Chen, Y. and Wang, R. (2014), "Effects of hydrazine hydrate treatment on the performance of reduced graphene oxide film as counter electrode in dye-sensitized solar cells", Appl. Surf. Sci., 319, 339-343.   DOI
13 Rath, T. and Kundu, P.P. (2015), "Reduced graphene oxide paper based nanocomposite materials for flexible supercapacitors", Rsc Advances, 5(34), 26666-26674.   DOI
14 Roy-Mayhew, J.D. and Aksay, I.A. (2014), "Graphene materials and their use in dye-sensitized solar cells", Chemical Reviews, 114(12), 6323-6348.   DOI
15 Shin, H.-J., Kim, K.K., Benayad, A., Yoon, S.-M., Park, H.K., Jung, I.-S., Jin, M.H., Jeong, H.-K., Kim, J.M., Choi, J.-Y. and Lee, Y.H. (2009), "Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance", Adv. Function. Mater., 19(12), 1987-1992.   DOI
16 Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T. and Ruoff, R.S. (2007), "Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide", Carbon, 45(7), 1558-1565.   DOI
17 Wu, Z.-S., Ren, W., Gao, L., Liu, B., Jiang, C. and Cheng, H.-M. (2009), "Synthesis of high-quality graphene with a pre-determined number of layers", Carbon, 47(2), 493-499.   DOI
18 Staudenmaier, L. (1898), "Verfahren zur Darstellung der Graphitsaure", Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487.   DOI
19 Titelman, G.I., Gelman, V., Bron, S., Khalfin, R.L., Cohen, Y. and Bianco-Peled, H. (2005), "Characteristics and microstructure of aqueous colloidal dispersions of graphite oxide", Carbon, 43(3), 641-649.   DOI
20 Wang, X., Zhi, L. and Mullen, K. (2008), "Transparent, conductive graphene electrodes for dye-sensitized solar cells", Nano Lett., 8(1), 323-327.   DOI
21 Xu, Y.X., Sheng, K.X., Li, C. and Shi, G.Q. (2011), "Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide", J. Mater. Chem., 21(20), 7376-7380.   DOI
22 Xu, X.B., Huang, D.K., Cao, K., Wang, M.K., Zakeeruddin, S.M. and Gratzel, M. (2013), "Electrochemically reduced graphene oxide multilayer films as efficient counter electrode for dye-sensitized solar cells", Sci. Rep., 3.
23 Yang, Y.K., He, C.E., He, W.J., Yu, L.J., Peng, R.G., Xie, X.L., Wang, X.B. and Mai, Y.W. (2011), "Reduction of silver nanoparticles onto graphene oxide nanosheets with N,N-dimethylformamide and SERS activities of GO/Ag composites", J. Nanopart. Res., 13(10), 5571-5581.   DOI
24 Yin, Z., Sun, S., Salim, T., Wu, S., Huang, X., He, Q., Lam, Y.M. and Zhang, H. (2010), "Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes", ACS Nano, 4(9), 5263-5268.   DOI
25 Casiraghi, C., Pisana, S., Novoselov, K.S., Geim, A.K. and Ferrari, A.C. (2007), "Raman fingerprint of charged impurities in graphene", Appl. Phys. Lett., 91(23), 233108.   DOI
26 Zhou, Y., Bao, Q., Tang, L.A.L., Zhong, Y. and Loh, K.P. (2009), "Hydrothermal dehydration for the "green" reduction of exfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties", Chem. Mater., 21(13), 2950-2956.   DOI
27 Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H. and Iijima, S. (2010), "Roll-to-roll production of 30-inch graphene films for transparent electrodes", Nat. Nano, 5(8), 574-578.   DOI
28 Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S., Zheng, Y., Balakrishnan, J., Lei, T., Kim, H.R., Song, Y.I. and Kim, Y.J. Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z. and Chen, Y. (2008), "Evaluation of solutionprocessed reduced graphene oxide films as transparent conductors", ACS Nano, 2(3), 463-470.   DOI
29 Boehm, H.P., Eckel, M. and Scholz, W. (1967), "Untersuchungen am Graphitoxid V. Uber den Bildungsmechanismus des Graphitoxids", Zeitschrift fur anorganische und allgemeine Chemie, 353(5-6), 236-242.   DOI
30 Brodie, B.C. (1859), "On the atomic weight of graphite", Philos. Transact. Royal Soc. London, 149, 249-259.   DOI
31 Das, S., Sudhagar, P., Ito, E., Lee, D.-y., Nagarajan, S., Lee, S.Y., Kang, Y.S. and Choi, W. (2012), "Effect of $HNO_3$ functionalization on large scale graphene for enhanced tri-iodide reduction in dye-sensitized solar cells", J. Mater. Chem., 22(38), 20490-20497.   DOI
32 Dreyer, D.R., Murali, S., Zhu, Y., Ruoff, R.S. and Bielawski, C.W. (2011), "Reduction of graphite oxide using alcohols", J. Mater. Chem., 21(10), 3443-3447.   DOI
33 Eigler, S., Enzelberger-Heim, M., Grimm, S., Hofmann, P., Kroener, W., Geworski, A., Dotzer, C., Rockert, M., Xiao, J., Papp, C., Lytken, O., Steinruck, H.-P., Muller, P. and Hirsch, A. (2013), "Wet chemical synthesis of graphene", Adv. Mater., 25(26), 3583-3587.   DOI
34 Fernandez-Merino, M.J., Guardia, L., Paredes, J.I., Villar-Rodil, S., Solis-Fernandez, P., Martinez-Alonso, A. and Tascon, J.M.D. (2010), "Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions", J. Phys. Chem. C, 114(14), 6426-6432.   DOI