• Title/Summary/Keyword: Nano-Scratch

Search Result 82, Processing Time 0.025 seconds

Mixed Nano Silica Colloidal Slurry for Reliability Improvement of Sapphire Wafer CMP Process (사파이어 웨이퍼 CMP 공정 신뢰성 향상을 위한 혼합 나노실리카 콜로이달 슬러리)

  • Chung, Chan Hong
    • Journal of Applied Reliability
    • /
    • v.14 no.1
    • /
    • pp.11-19
    • /
    • 2014
  • A colloidal silica slurry has been manufactured by mixing nano silica powders having different grain size to improve the reliability of Sapphire wafer CMP process. The main reliability problem of CMP process such as the breaking of wafer can be prevented by reducing the size of particles in a slurry. While existing commercial colloidal silica slurries are usually made of single grain size silica powder of about 120nm, in the present study 40nm and 100nm silica powders are mixed to achieve a similar removal rate. The new colloidal silica slurry showed wafer removal rate of $3.04{\mu}m/120min$ while that of a commercial colloidal silica slurry was $3.03{\mu}m/120min$. The roughness was less than $4{\AA}$ and scratch was 0. It is also expected that the reduction of the size of nano silica particles can improve the dispersion stability and prolong the useful life of the slurry.

Characteristic properties of TiN thin films prepared by DC magnetron sputtering method for hard coatings (Hard coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.354-354
    • /
    • 2007
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness. In this paper, we wanted see how the films properties are changed according to DC power. TiN thin films were deposited by direct current (DC) magnetron sputtering method using TiN compound target on silicon substrates. The films structural properties are examined by X-ray Diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester, nano-stress tester. Especially in DC power of 150 W, the maximum hardness and the minimum residual stress of TiN film exhibited about 25 GPa and 1 GPa, respectively. And also, the critical load of TiN film prepared by magnetron sputtering method were measured over 30 N.

  • PDF

Evaluation of Age-Hardening Characteristics of Rheo-Cast A356 Alloy by Nano/Micro Hardness Measurement (나노/마이크로 경도 측정에 의한 레오캐스트 A356 합금의 시효경화특성 평가)

  • Cho S. H.;Youn S. W.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.471-474
    • /
    • 2005
  • This study investigates the nano/microstructure, the aging response, and the mechanical/tribological properties of the eutectic regions in rheoformed A356 alloy-T5 parts using nano/micro-indentation and mechanical scratching, combined with optical microscopy and atomic force microscope (AFM). Most eutectic Si crystals in the A356 alloy showed a modified morphology as fine-fibers. The loading curve for the eutectic region was more irregular than that of the primary Al region due to the presence of various particles of varying strength. The aging responses of the eutectic regions in the rheoformed A356 alloys aged at $150^{\circ}C$ for different times (0, 2, 4, 8, 10, 16, 24, 36, and 72 h) were investigated. Both Victors hardness $(H_v)$ and indentation $(H_{IT})$ test results showed a similar trend of aging curves, and the peak was obtained at the same aging time of 10 h. A remarkable size-dependence of the tests was found.

  • PDF

A Tribological Investigation on Laser Textured Disk and Mechanically Textured Disk of Computer Hard Disk Drive (컴퓨터 하드디스크 드라이브의 레이저 텍스쳐 디스크와 미케니칼 텍스쳐 디스크의 마모거동에 관한 연구)

  • Kim, Woo-Seok;Kim, Do-Hyung;Hwang, Pyung;Kim, Jang-Kyo
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.106-114
    • /
    • 1998
  • Tribological investigation of ultra thin film magnetic storage disks which have two different kinds of start/stop zone of laser textured bump disk and mechanically textured disk for before CSS test and after CSS test. To measure surface roughness, height reduction before/after CSS test and obtain accurate topographies, AFM(Atomic Force Microscope) which is most powerful recently has been used. The result of statistical analysis showed that both laser textured bump height and mechanically textured zone height have been reduced about 4~7nm after 15000 cycle CSS test. Using commercial Nano-Indenter, ramping load scratch test has been performed to investigate friction characteristic for laser textured zone and mechanically textured zone before/after CSS test.

  • PDF

The Application of DLC(diamond-like carbon) Film for Plastic Injection Mold by Hybrid Method of RF Sputtering and Ion Source (RF 스퍼터링과 이온소스 복합방식에 의한 플라스틱사출금형(SKD11)의 DLC막 응용)

  • Kim, Mi-Seon;Hong, Sung-Pill
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.173-178
    • /
    • 2009
  • DLC film was synthesized on plastic injection mold(SKD11, $30\;mm\;{\times}\;19\;mm\;{\times}\;0.5\;mm$) and Si(100) wafer for 2 h at $130^{\circ}C$ under 6 mTorr using hybrid method of rf sputtering and ion source. The obtained film was analysed by Raman spectroscopy, AFM, TEM, Nano indenter and scratch tester, etc. The film was defined as an amorphous phase. In the Raman spectrum, broad peak of $sp^2$-bonded carbon attributed to graphite at $1550\;cm^{-1}$ were observed, and the ratio of ID($sp^3$ diamond intensity)/IG($sp^2$ graphite intensity) was approximately 0.54. The adhesion of DLC film was more than 80 N with scratch tester when $0.2\;{\mu}m$ thickness Cr was coated as interlayer. The micro-hardness was distributed at 35~37 GPa. The friction coefficient was 0.02~0.07, and surface roughness(Ra) was 0.34~1.64 nm. The lifetime of DLC coated plastic injection mold using as a connector part in computer was more than 2 times of non-coated mold.

Plating of Cu layer with the aid of organic film on Si-wafer (유기박막을 이용한 Si기판상의 구리피복층 형성에 관한 연구)

  • Park Ji-hwan;Park So-yeon;Lee Jong-kwon;Song Tae-hwa;Ryoo Kun-kul;Lee Yoon-bae;Lee Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.5
    • /
    • pp.458-461
    • /
    • 2004
  • In order to improve the adhesion properties of copper, MPS(3-mercaptopropyltrimethoxysilane) organic film were employed. The plasma pretreatment in pure He or $He/O_{2}$ mixed gas environment greatly increased adhesion force. Adhesion force was measured by scratch test with nano indenter. Microstructures and surface roughness were observed with scanning electron microscope(SEM). The characteristics of MPS layer for pretreatment were studied with flourier transform infrared spectroscope(FT-IR) and contact angle tester. The heighest adhesion was achieved in the specimen pretreated with mixed plasma and NPS coating, which was 56mN. Other specimen showed lower value by $20{\%}$ to $30{\%}$. The roughness of substrate was not affected by the bonding strength of copper plating.

  • PDF

A Study on the standardize the characteristic evaluation of DC magnetron sputtered silver coatings for engineering purposes (D.C. magnetron sputter를 이용한 Ag layer 건식 도금층의 특성 평가 국제 표준화에 대한 연구)

  • Gyawali, Gobinda;Choi, Jinhyuk;Lim, Tae Kwan;Jung, Myoung Joon;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2015.11a
    • /
    • pp.249-249
    • /
    • 2015
  • Silver films have been of considerable interest for years due to their better performance relative to other metal films for engineering applications. A series of multi-layer silver coatings with different thickness (i.e. 0.3 um to 1.5 um) were prepared on Aluminium substrate containing copper undercoat by direct current (DC) magnetron sputtering method. For the comparative purpose, similar thickness silver coatings were prepared by electrolytic deposition method. Microstructural, morphological, and mechanical characteristics of the silver coatings were evaluated by means of scanning electron microscope (SEM), X-ray diffraction (XRD), Surface roughness test, microhardness test and nano-scratch test. From the results, it has been elucidated that the silver films prepared by DC magnetron sputtering method has superior properties in comparison to the wet coating method. On the other hand, DC magnetron sputtering method is relatively easier, faster, eco-friendly and more productive than the electrolytic deposition method that uses several kinds of hazardous chemicals for bath formulation. Therefore, a New Work Item Proposal (NWIP) for the test methods standardization of DC magnetron sputtered silver coatings has recently been proposed via KATS, Korea and a NP ballot is being progressed within a technical committee "ISO/TC107-metallic and other inorganic coating".

  • PDF

Surface Characteristics of Polymer Coated NiTi Alloy Wire for Orthodontics (폴리머 코팅된 NiTi합금 교정선의 표면특성)

  • Cho, Joo-Young;Kim, Won-Gi;Choi, Hwan-Suk;Lee, Ho-Jong;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.3
    • /
    • pp.132-141
    • /
    • 2010
  • NiTi alloy has been used for orthodontic wire due to good mechanical properties, such as elastic strength and frictional resistance, combined with a high resistance to corrosion. Recently, these wire were coated by polymer and ceramic materials for aesthetics. The purpose of this study was to investigate surface characteristics of polymer coated NiTi alloy wire for orthodontics using various instruments. Wires (round type and rectangular type) were used, respectively, for experiment. Polymer coating was carried out for wire. Specimen was investigated with field emission scanning electron microscopy(FE-SEM), energy dispersive x-ray spectroscopy(EDS) and atomic force microscopy(AFM). The phase transformation of non-coated NiTi wire from martensite to austenite occurred at the range of $14{\sim}15^{\circ}C$, in the case of coated wire, it occurred at the range of $16{\sim}18^{\circ}C$. Polymer coating on NiTi wire surface decreased the surface defects such as scratch which was formed at severe machined surface. From the AFM results, the average surface roughness of non-coated and coated NiTi wire was 13.1 nm, and 224.5 nm, respectively. From convetional surface roughness test, the average surface roughness of non-coated and coated NiTi wire was $0.046{\mu}m$, and $0.718{\mu}m$, respectively.

Castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposite

  • Bhagawati, Deepshikha;Thakur, Suman;Karak, Niranjan
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.15-29
    • /
    • 2016
  • A low cost environmentally benign surface coating binder is highly desirable in the field of material science. In this report, castor oil based hyperbranched polyester/bitumen modified fly ash nanocomposites were fabricated to achieve the desired performance. The hyperbranched polyester resin was synthesized by a three-step one pot condensation reaction using monoglyceride of castor oil based carboxyl terminated pre-polymer and 2,2-bis (hydroxymethyl) propionic acid. Also, the bulk fly ash of paper industry waste was converted to hydrophilic nano fly ash by ultrasonication followed by transforming it to an organonano fly ash by the modification with bitumen. The synthesized polyester resin and its nanocomposites were characterized by different analytical and spectroscopic tools. The nanocomposite obtained in presence of 20 wt% styrene (with respect to polyester) was found to be more homogeneous and stable compared to nanocomposite without styrene. The performance in terms of tensile strength, impact resistance, scratch hardness, chemical resistance and thermal stability was found to be improved significantly after formation of nanocomposite compared to the pristine system after curing with bisphenol-A based epoxy and poly(amido amine). The overall results of transmission electron microscopic (TEM) analysis and performance showed good exfoliation of the nano fly ash in the polyester matrix. Thus the studied nanocomposites would open up a new avenue on development of low cost high performing surface coating materials.

Characteristic Properties of TiN Thin Films Prepared by DC Magnetron Sputtering Method for Hard Coatings (Hard Coating 응용을 위한 DC 마그네트론 스퍼터링 방법을 이용하여 증착한 TiN 박막의 특성에 대한 연구)

  • Kim, Young-Ryeol;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.7
    • /
    • pp.660-664
    • /
    • 2008
  • Titanium nitride (TiN) thin films are widely used for hard coatings due to their superior hardness, chemical stability, low friction and good adhesion properties. In this study, we investigated the effect of DC power on the characteristics of TiN thin films deposited on Si and glass substrates by DC magnetron sputtering using TiN target. We made TiN films of 300 nm thickness with various DC powers. The structural properties of films are investigated by x-ray diffractions (XRD) and tribological properties are measured by nano-indentation, nano-scratch tester. The rms roughness was measured by atomic forced microscopy (AFM). In the result, TiN films had the smooth surface and exhibited (111) directions with the increase of DC Power. Also, especially in case of 175 W DC power, TiN film exhibited the maximum hardness about 8 GPa, and the critical load near 25.