• Title/Summary/Keyword: Nano-Plasma

Search Result 643, Processing Time 0.031 seconds

Plasma Engineering for Nano-Materials

  • Kim, Seong-In;Shin, Myoung-Sun;Son, Byung-Koo;Song, Seok-Kyun;Choi, Sun-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.79-79
    • /
    • 2012
  • A high temperature and a low temperature plasma process technologies were developed and demonstrated for synthesis, hybrid formation, surface treatment and CVD engineering of nano powder. RF thermal plasma is used for synthesis of spherical nano particles in a diameter ranged from 10 nm to 100 nm. A variety of nano particules such as Si, Ni, has been synthesized. The diameter of the nano-particles can be controlled by RF plasma power, pressure, gas flow rate and raw material feed rate. A modified RF thermal plasma also produces nano hybrid materials with graphene. Hemispherical nano-materials such as Ag, Ni, Si, SiO2, Al2O3, size ranged from 30 to 100 nm, has been grown on graphene nanoplatelet surface. The coverage ranged from 0.1 to 0.7 has been achieved uniformly over the graphene surface. Low temperature AC plasma is developed for surface modification of nano-powder. In order to have a three dimensional and lengthy plasma treatment, a spiral type of reactor has been developed. A similar plasma reactor has been modfied for nano plasma CVD process. The reactor can be heated with halogen lamp.

  • PDF

Degradation of electrical characteristics in SOI nano-wire Bio-FET devices ($O_2$ plasma 표면 처리 공정에 의한 SOI nano-wire Bio-FET 소자의 전기적 특성 열화)

  • Oh, Se-Man;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.356-357
    • /
    • 2008
  • The effects of $O_2$ plasma ashing process for surface treatment of nano-wire Bio-FET were investigated. In order to evaluate the plasma damage introduced by $O_2$ plasma ashing, a back-gate biasing method was developed and the electrical characteristics as a function of $O_2$ plasma power were measured. Serious degradations of electrical characteristics of nano-wire Bio-FET were observed when the plasma power is higher than 50 W. For curing the plasma damages, a forming gas anneal (2 %, $H_2/N_2$) was carried out at $400^{\circ}C$. As a result, the electrical characteristics of nano-wire Bio-FET were considerably recovered.

  • PDF

Diagnosis of $BCl_3$ and $BCl_3$/Ar Plasmas with an Optical Emission Spectroscopy during High Density Planar Inductively Coupled Dry Etching (평판형 고밀도 유도결합 건식 식각시 Optical Emission Spectroscopy를 이용한 $BCl_3$$BCl_3$/Ar 플라즈마의 분석)

  • Cho, Guan-Sik;Wantae Lim;Inkyoo Baek;Seungryul Yoo;Park, Hojin;Lee, Jewon;Kuksan Cho;S. J. Pearton
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.88-88
    • /
    • 2003
  • Optical Emission Spectroscopy(OES) is a very important technology for real-time monitoring of plasma in a reactor during dry etching process. OES technology is non-invasive to the plasma process. It can be used to collect information on excitation and recombination between electrons and ions in the plasma. It also helps easily diagnose plasma intensity and monitor end-point during plasma etch processing. We studied high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar plasma with an OES as a function of processing pressure, RIE chuck power, ICP source power and gas composition. The scan range of wavelength used was from 400 nm to 1000 nm. It was found that OES peak Intensity was a strong function of ICP source power and processing pressure, while it was almost independent on RIE chuck power in BCl$_3$-based planar ICP processes. It was also worthwhile to note that increase of processing pressure reduced negatively self-induced dc bias. The case was reverse for RIE chuck power. ICP power and gas composition hardly had influence on do bias. We will report OES results of high density planar inductively coupled BCl$_3$ and BCl$_3$/Ar Plasma in detail in this presentation.

  • PDF

THERMAL PLASMA SYNTHESIS OF NANO-SIZED POWDERS

  • Seo, Jun-Ho;Hong, Bong-Guen
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.9-20
    • /
    • 2012
  • A brief review on the thermal plasma synthesis of nano-sized powders is presented according to the application materials, such as, metals, ceramics, glasses, carbonaceous materials and other functional composites, such as, supported metal catalyst and core-shell structured nano materials. As widely adopted plasma sources available for thermal plasma synthesis of nanosized powders, three kinds of plasma torches, such as transferred and non-transferred DC and RF plasma torches, are introduced with the main features of each torch system. In the basis of the described torch features and the properties of suggested materials, application results including synthesis mechanism are reviewed in this paper.

Plasma Treatments to Forming Metal Contacts in Graphene FET

  • Choi, Min-Sup;Lee, Seung-Hwan;Lim, Yeong-Dae;Yoo, Won-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.121-121
    • /
    • 2011
  • Graphene formed by chemical vapor deposition was exposed to the various plasmas of Ar, O2, N2, and H2 to examine its effects on the bonding properties of graphene to metal. Upon the Ar plasma exposure of patterned graphene, the subsequently deposited metal electrodes remained intact, enabling successful fabrication of field effect transistor (FET) arrays. The effects of enhancing adhesion between graphene and metals were more evident from O2 plasmas than Ar, N2, and H2 plasmas, suggesting that chemical reaction of O radicals induces hydrophilic property of graphene more effectively than chemical reaction of H and N radicals and physical bombardment of Ar ions. From the electrical measurements (drain current vs. gate voltage) of field effect transistors before and after Ar plasma exposure, it was confirmed that the plasma treatment is very effective in controlling bonding properties of graphene to metals accurately without requiring buffer layers.

  • PDF

N2 plasma treatment of pigments with minute particle sizes to improve their dispersion properties in deionized water

  • Zhang, Jingjing;Park, Yeong Min;Tan, Xing Yan;Bae, Mun Ki;Kim, Dong Jun;Jang, Tae Hwan;Kim, Min Su;Lee, Seung Whan;Kim, Tae Gyu
    • Journal of Ceramic Processing Research
    • /
    • v.20 no.6
    • /
    • pp.589-596
    • /
    • 2019
  • Pigments with minute particle sizes, such as carbon black (CB) and pigment red 48:2 (P.R.48:2), are the most important types of pigment and have been widely used in many industrial applications. However, minute particles have large surface areas, high oil absorption and low surface energy. They therefore tend to be repellent to the vehicle and lose stability, resulting in significant increases in viscosity or reaggregation in the vehicle. Therefore, finding the best way to improve the dispersion properties of minute particle size pigments presents a major technical challenge. In this study, minute particle types of CB and P.R.48:2 were treated with nitrogen gas plasma generated via radio frequency-plasma enhanced chemical vapor deposition (RF-PECVD) to increase the dispersion properties of minute particles in deionized (DI) water. The morphologies and particle sizes of untreated and plasma treated particles were evaluated using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The average distributions of particle size were measured using a laser particle sizer. Fourier transform infrared spectroscopy was carried out on the samples to identify changes in molecular interactions during plasma processing. The results of our analysis indicate that N2 plasma treatment is an effective method for improving the dispersibility of minute particles of pigment in DI water.

Development of Surface Treatment for Hydrophobic Property on Aluminum Surface (알루미늄의 발수 표면처리 기술 개발)

  • Byun, Eun-Yeon;Lee, Seung-Hun;Kim, Jong-Kuk;Kim, Yang-Do;Kim, Do-Geun
    • Journal of Surface Science and Engineering
    • /
    • v.45 no.4
    • /
    • pp.151-154
    • /
    • 2012
  • A hydrophobic surface has been fabricated on aluminum by two-step surface treatment processes consisting of structure modification and surface coating. Nature inspired micro nano scale structures were artificially created on the aluminum surface by a blasting and Ar ion beam etching. And a hydrophobic thin film was coated by a trimethylsilane ($(CH_3)_3SiH$) plasma deposition to minimize the surface energy of the micro nano structure surface. The contact angle of micro nano structured aluminum surface with the trimethylsilane coating was $123^{\circ}$ (surface energy: 9.05 $mJ/m^2$), but the contact angle of only trimethylsilane coated sample without the micro nano surface structure was $92^{\circ}$ (surface energy: 99.15 $mJ/m^2$). In the hydrophobic treatment of aluminum surface, a trimethylsilane coated sample having the micro nano structure was more effective than only trimethylsilane coated sample without the micro nano structure.

Nano-mechanics 분석을 기반으로 Sol-gel PZT 박막의 Plasma에 의한 물리적 특성 변화 연구

  • Kim, Su-In;Kim, Seong-Jun;Gwon, Gu-Eun;Kim, Hyeon-Seok;Eom, Eun-Sang;Park, Jun-Seong;Lee, Jeong-Hyeon;Lee, Chang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.216.1-216.1
    • /
    • 2013
  • PZT 박막은 강유전 특성과 압전소자 특성을 나타내는 물질로 DRAM (dynamic random acess memory)과 FRAM (ferroelectric RAM) 등의 기억소자용 capacitor와 MEMS (micro electro mechanical system) 소자의 압전 물질로 사용하기 위한 연구가 진행중에 있다. 하지만 이러한 연구에서는 PZT 박막의 전기적 특성 향상을 주목적으로 연구가 진행되어 왔다. 특히, 박막 공정중 발생하는 plasma에 의한 PZT의 전기적 특성 변화가 박막 표면의 물리적 변화에 기인할 것으로 추정하고 있지만 이에 대한 구체적인 연구는 미비하다. 이 연구에서는 plasma에 의한 PZT 박막 표면의 물리적 특성 변화를 연구하기 위하여 PZT 박막을 sol-gel을 이용하여 Si 기판위에 약 100 nm의 두께로 증착하였으며, 이후 최대 300 W의 Ar plasma로 plasma power을 증가시켜 각각 10분간 plasma처리를 실시하였다. PZT 박막 표면의 nano-mechanics 특성을 분석하기 위하여 Nano-indenter와 Kelvin Probe Force Microscopy (KPFM)을 사용하여 surface hardness, surface morphology를 확인하였고 특히, surface potential 분석을 통하여 PZT 박막 표면의 plasma에 의한 박막 극 표면의 전기적 특성 변화를 연구하였다. 이 연구로 plasma에 의한 PZT 박막은 표면으로부터 최대 43 nm 깊이에서의 hardness는 최대 5.1 GPa에서 최소 4.3 GPa의 분포로 plasma power 변화에 의한 특성은 측정 불가능하였다. 이는 plasma에 의한 영향이 시료 극 표면에 국한되어 나타나기 때문으로 추정되며 이를 보완하기 위하여 surface potential을 분석하였다. 결과에 의하면 plasma power가 0 W에서 300 W로 증가함에 따라 potential이 30 mV에서 -20 mV로 감소하였으나 potential의 분산은 100 W에서 최대인 17 mV로 측정되었으며, 이때 RMS roughness역시 가장 높은 20.145 nm로 측정되었다. 특히, 100 W에서 potential에서는 물결 모양과 같은 일정한 패턴의 potential 무늬가 확인되었다.

  • PDF

Optical diffraction gratings embedded in BK-7 glasses by tightly focused femtosecond laser

  • Yoon, Ji Wook;Choi, Won Suk;Kim, Hoon Young;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.2
    • /
    • pp.19-25
    • /
    • 2014
  • Optical embedded diffraction gratings with the bulk modification in BK-7 glass plates excited by tightly focused high-intensity femtosecond (130fs) Ti: sapphire laser (peak wavelength = 790nm) were demonstrated. The structural modifications with diameters ranging from 400nm to $4{\mu}m$ were photo-induced after plasma formation occurred upon irradiation with peak intensities of more than $1{\times}1013W/cm^2$. The graded refractive index profile was fabricated to be a symmetric around from the center of the point at which low-density plasma occurred. The maximum refractive index change was estimated to be $1.5{\times}10^{-2}$. The two optical embedded gratings in BK-7 glass plate were demonstrated with refractive index modification induced by the scanning of low-density plasma formation.

  • PDF

Synthesis of Silver Nano-particles by the Solution Plasma Sputtering Method (유체 플라즈마 방식을 사용한 은 나노파티클의 합성)

  • Yoo, Seung-cheol;Shin, Hong-Jik;Choi, Won Seok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.216-218
    • /
    • 2016
  • In this study, we used not chemical and physical synthesis method but the solution plasma sputtering method in the synthesis of silver nano-particles. Synthesis of all the silver nano-particles was conducted for 1hour in 360 ml of distilled water and characteristics of changing the input voltage and frequency of the synthesised silver nano-particles by using the solution plasma sputtering method were analyzed through FE-SEM(Field Emission-Scanning Electron Microscope). We changed the input voltage from 8 kV to 10 kV in steps of 1 kV, input frequency from 20 kHz to 30 kHz in steps of 5 kHz in the solution plasma reactor with the advanced device which can control the DC voltage and frequency. We confirmed that the size of silver nano-particles were larger according to the change of the input voltage and frequency.