• 제목/요약/키워드: Nano-Particle

검색결과 1,176건 처리시간 0.038초

초음파 무화효과를 이용한 현탁액으로부터 나노입자의 분리포집법 제안 (Suggestion of separation and recollection method of nano particles from suspension by using ultrasonic atomization)

  • 김지향;김정순;염지영;하강렬;김무준
    • 한국음향학회지
    • /
    • 제35권6호
    • /
    • pp.445-451
    • /
    • 2016
  • 나노기술의 실제적인 응용을 위해 응집되지 않은 나노입자 상태를 얻는 것이 매우 중요하다. 나노입자를 사용하는 제품의 기능성을 향상시키기 위해, 그들의 합성 과정에서 입자 크기 분포의 더 정밀한 제어가 요구된다. 그러나 합성된 나노입자들은 물리적 혹은 화학적인 이유로 응집되기 쉬워 나노입자의 고유한 특성이 가려져 실제적인 응용에 있어서 문제를 일으킨다. 본 연구는 단분산된 나노입자만을 분리하기 위하여 초음파 무화 효과에 의한 무화입자를 분리장으로 사용한 나노입자 분리방법을 제안하였다. 0.002 wt. %의 농도를 갖는 $TiO_2$ 나노입자 현탁액을 무화시켜 분리포집된 현탁액에 포합된 나노입자들의 입도분포를 측정하였다. 그 결과들로부터 제안된 방법을 이용하여 단분산 입자의 분리 포집이 가능함을 확인 할 수 있다.

Oil in Water 에멀전에서 오일 입자 크기가 분산 안정성에 미치는 영향 (Effect of oil particle size on dispersion stability in oil in water emulsion)

  • 황보선애;추민철;문창권
    • 한국입자에어로졸학회지
    • /
    • 제13권3호
    • /
    • pp.133-139
    • /
    • 2017
  • In this paper, we proposed an emulsification method without using an emulsifier and investigated the effects of particle size distribution in fluids on dispersion stability. Surfactant-free oil in water emulsion was prepared with 1 % (w/w) of olive oil by using high speed agitation, high pressure and ultrasonic dispersion methods. The particle size, microscopic observation, and dispersion stability of each sample were evaluated and dispersion stability according to various dispersion methods was compared. As a result, the emulsion dispersed by the ultrasonic dispersion method showed the smallest particle size and uniform distribution of $0.07{\sim} 0.3{\mu}m$ and was the most stable in a 7 days stability evaluation. In the above experiment, four olive oil emulsions having different particle sizes were prepared using ultrasonic dispersion technology that was capable of producing stable emulsions. The dispersion stability of each samples with oil droplet sizes of (A) 0.1 to $0.5{\mu}m$, (B) 0.3 to $4{\mu}m$, (C) 1 to $10.5{\mu}m$ and (D) 2 to $120{\mu}m$, was observed for 7 days, and the relationship between the stability and performance was studied. Emulsion (A) with particle size less than $0.5{\mu}m$ displayed the dispersion stability showing below 5 % change in a 7 days stability evaluation. In the case of (B), (C), and (D) that had larger particle than $0.5{\mu}m$, the changes of dispersion stability were 10 %, 13 % and 35 % respectively. From these results, it was proved that dispersion stability of emulsion with uniform particle size of $0.5{\mu}m$ or less was confirmed to be very stable.

Fabrication of the Nano-Sized Nickel Oxide Powder by Spray Pyrolysis Process

  • Yu, Jae-Keun;NamGoong, Hyun;Kim, Dong-Hee
    • 한국재료학회지
    • /
    • 제22권8호
    • /
    • pp.426-432
    • /
    • 2012
  • This study involves using nickel chloride solution as a raw material to produce nano-sized nickel oxide powder with average particle size below 50 nm by the spray pyrolysis reaction. The influence of the inflow speed of raw material solution on the properties of the produced powder is examined. When the inflow speed of the raw material solution is at 2 ml/min., the average particle size of the powder is 15~25 nm and the particle size distribution is relatively uniform. When the inflow speed of the solution increases to 10 ml/min., the average particle size of the powder increases to about 25 nm and the particle size distribution becomes much more uneven. When the inflow speed of the solution increases to 20 ml/min., the average particle size of the powder increases in comparison to the case in which the inflow speed of the solution was 10 ml/min. However, the particle size distribution is very uneven, showing various particle size distributions ranging from 10 nm to 70 nm. When the inflow speed of solution increases to 50 ml/min., the average particle size of the powder decreases in comparison to the case in which the inflow speed was 20 ml/min., and the particle size distribution shows more evenness. As the inflow speed of the solution increases from 2 ml/min. to 20 ml/min., the XRD peak intensities gradually increase, while the specific surface area decreases. When the inflow speed of solution increases to 50 ml/min., the XRD peak intensities rather decrease, while the specific surface area increases.

Faraday cup array 개발을 위한 Particle Beam Mass Spectrometer 시스템 내에서의 입자 확산 연구 (A Study on Particle Diffusion to Develop Faraday Cup Array of Particle Beam Mass Spectrometer System)

  • 문지훈;신용현;김태성;강상우
    • 한국입자에어로졸학회지
    • /
    • 제8권1호
    • /
    • pp.29-35
    • /
    • 2012
  • The Faraday cup electrode of different size has been developed and evaluated to investigate the diffusion effect of particles by Brownian motion in a particle beam mass spectrometer(PBMS). Particles which focused and accelerated by aerodynamic lens are charged to saturation in an electron beam, and then deflected electrostatically into a Faraday cup detector for measurement of the particle current. The concentration of particles is converted from currents detected by Faraday cup. Measurements of particle current as a function of deflection voltage are combined with measured relationships between particle velocity and diameter, charge and diameter, and mass and diameter, to determine the particle size distribution. The particle currents were measured using 5, 10, 20, 40 mm sized Faraday cup that can be move to one direction by motion shaft. The current difference for each sizes as a function of position was compared to figure out diffusion effect during transport. Polystyrene latex(PSL) 100, 200 nm sized standard particles were used for evaluation. The measurement using 5 mm sized Faraday cup has the highest resolution in a diffusion distance and the smaller particles had widely diffused.

뫼스바우어 분광법에 의한 Fe-나노입자의 탄화물 코팅에 관한 연구 (Studying Carbon Coating on the Surface of Nano-sized Fe Particle by Mössbauer Analysis)

  • 오세진;최철진;김진천;권순주;진상호
    • 한국자기학회지
    • /
    • 제15권3호
    • /
    • pp.172-176
    • /
    • 2005
  • 화학기상응축법(CVC)에 의한 제조된 네 개의 나노-Fe 입자 시료들이 뫼스바우어, XRD, BET와 TEM에 의하여 조사되었다. 네 개의 시료들은 고순도 이송가스와 분해온도에 의해 구성이 되었다. 각 시료를 구성하고 있는 입자들은 2 또는 3층구조로 형성되었음을 TEM분석으로 알 수 있었다. 평균입도의 경우에는 분해온도에 정비례하는 특성을 보여 주었다. 분해온도가 $500^{\circ}C$일 경우에, 이송가스를 CO로 사용하게 되면 $Fe_3C$의 형성이 $CH_4$보다 용이한 것으로 나타났다. 그러나 $1,100^{\circ}C$의 경우에는, CO와 $CH_4$모두에서 $Fe_3C$의 형성이 대부분을 차지하고 있는 것으로 나타났다.

분무열분해공정에 의한 인듐 산화물 나노 분말 제조에 미치는 반응인자들의 영향 (Effect of Reaction Factors on the Fabrication of Nano-Sized Indium Oxide Powder by Spray Pyrolysis Process)

  • 유재근
    • 한국분말재료학회지
    • /
    • 제11권6호
    • /
    • pp.493-502
    • /
    • 2004
  • In this study, nano-sized indium oxide powder with the average particle size below 100 nm is fab-ricated from the indium chloride solution by the spray pyrolysis process. The effects of the reaction temperature, the concentration of raw material solution and the inlet speed of solution on the properties of powder were studied. As the reaction temperature increased from 850 to $1000^{\circ}C$, the average particle size of produced powder increased from 30 to 100 nm, and microstructure became more solid, the particle size distribution was more irregular, the intensity of a XRD peak increased and specific surface area decreased. As the indium concentration of the raw material solution increased from 40 to 350 g/l, the average particle size of the powder gradually increased from 20 to 60 nm, yet the particle size distribution appeared more irregular, the intensity of a XRD peak increased and spe-cific surface area decreased. As the inlet speed of solution increased from 2 to 5 cc/min., the average particle size of the powder decreased and the particle size distribution became more homogeneous. In case of the inlet speed of 10 cc/min, the average particle size was larger and the particle size distribution was much irregular compared with the inlet speed of 5 cc/min. As the inlet speed of solution was 50 cc/min, the average particle size was smaller and microstructure of the powder was less solid compared with the inlet speed of 10 cc/min. The intensity of a XRD peak and the variation of specific area of the powder had the same tendency with the variation of the average par-ticle size.

Polyol process를 이용한 태양전지용 $CuInS_2$ 나노분말 제조 및 특성평가 (Characterization and Manufacturing for Solar Cells $CuInS_2$ Nanopowder by polyol process)

  • 이대걸;이남희;오효진;윤영웅;황종선;김선재
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2009년도 춘계학술대회 논문집 전기설비전문위원
    • /
    • pp.30-32
    • /
    • 2009
  • In this study, $CuInS_2$ powders have been synthesized using polyol process of a mixture of copper nitrate, indium nitrate, and thiourea with various stoichiometric molar ratios in ethylene glycol at 196$^{\circ}C$. As boiling time goes by, the color of metal ion mixed solutions were changed transparent green to dark green and finally fumed to black by reduction of $OH^-$ radicals. The prepared powders were fully characterized by SEM, XRD and UV-Vis. The particle shape of black colored powders showed sphere with about 30 nm in particle size compared to those with dark green colored powders showed irregular shape with about 1 ${\mu}m$ in particle size. The XRD results showed highly crystallized $CuInS_2$. The UV-Vis spectra showed broad shoulder at 430 and 780 nm corresponding to 2.78 and 1.58 eV for the dark green colored one and black colored one, respectively.

  • PDF

표면전하를 이용한 SiO2/PMMA 분말의 분산 제어 및 평가 (Dispersion Control and Characterization of the SiO2/PMMA Particles Using Surface Charge)

  • 강유빈;손수정;이근재
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.403-407
    • /
    • 2015
  • Poly-methylmetacrylate (PMMA) is mainly applied in the plastic manufacturing industry, but PMMA is weak and gradually got discolor. The strength of PMMA can be improved through organic-inorganic hybrid nano composites with inorganic nano particles such as, $SiO_2$ or ZrO. However, inorganic nano particles are mostly agglomerated spontaneously. In this study, the zeta potential is controlled using different types of organic solvent with different concentrations, dispersibillity of $SiO_2$ nano particles on the PMMA particle are analyzed. When 3 M acetic acid is used, absolute value of the zeta potential is higher, $SiO_2$ nano particle is well attached, and dispersed on the PMMA particle surface. Results indicate that the absolute value of the zeta potential affects the stability of $SiO_2$ dispersion.

Cold Compaction Behavior of Nano and Micro Aluminum Powder under High Pressure

  • Kim, Dasom;Park, Kwangjae;Kim, Kyungju;Cho, Seungchan;Hirayama, Yusuke;Takagi, Kenta;Kwon, Hansang
    • Composites Research
    • /
    • 제32권3호
    • /
    • pp.141-147
    • /
    • 2019
  • In this study, micro-sized and nano-sized pure aluminum (Al) powders were compressed by unidirectional pressure at room temperature. Although neither type of Al bulk was heated, they had a high relative density and improved mechanical properties. The microstructural analysis showed a difference in the process of densification according to particle size, and the mechanical properties were measured by the Vickers hardness test and the nano indentation test. The Vickers hardness of micro Al and nano Al fabricated in this study was five to eight times that of ordinary Al. The grain refinement effect was considered to be one of the strengthening factors, and the Hall-Petch equation was introduced to analyze the improved hardness caused by grain size reduction. In addition, the effect of particle size and dispersion of aluminum oxide in the bulk were additionally considered. Based on these results, the present study facilitates the examination of the effect of particle size on the mechanical properties of compacted bulk fabricated by the powder metallurgy method and suggests the possible way to improve the mechanical properties of nano-crystalline powders.