Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.176.2-176.2
/
2015
기존의 트라이볼로지 분석 기법은 macro 영역에서 시료의 강도 및 탄성 등의 물성을 분석하는 정도였으나 Nano-Indenter 분석 기법은 macro 영역보다 더 미세한 nano 영역에서의 시료 물성 분석을 가능하게 해주었다. 따라서 본 연구에서는 시료들의 결정 배양 방향에 따른 Nano-Indenter 압입 각도 차이에 대한 nano 영역에서의 연구를 진행하였다. Si 기판 외에 본 연구에 사용 된 HfN 및 Zr 박막의 시료들은 rf magnetron sputter를 이용하여 약 100 nm 두께로 증착하였다. 각각 시료들에 대한 결정성 확인을 위해 XRD 분석을 실시하였다. 이후 Nano-Indenter를 이용하여 압입 인가력 대비 압입 깊이를 측정하였다. 이 과정에서 Nano-Indenter 압입 각도를 $0^{\circ}$와 $90^{\circ}$로 변화함에 따라 압입 인가력 - 압입 깊이 그래프의 차이를 확인하였고 이를 기준점으로 부터 $10{\mu}m$ 이격시켜 16회 반복 측정과 Weilbull distribution을 통해 신뢰도를 향상시켰다. 측정 결과 Zirconium(Zr) 박막의 경우 21.53 GPa과 22.18 GPa 측정되었으나 Si 기판은 17.46 GPa 16.33 GPa으로, 그리고 HfN 박막의 경우 25.18 GPa과 27.75 GPa으로 상대적으로 큰 차이를 확인하였다. Si 기판과 HfN의 측정결과 Weibull distribution는 75.02와 70.23인 반면 Zr 박막은 30.94로 상대적으로 불균일한 특성을 확인하였다. 이 결과들로부터 각각의 박막 결정 배양 방향에 따른 분석의 한가지 방법으로 Nano-Indenter 분석 기법을 사용할 수 있는 가능성을 확인하였다.
Jo, Si-Yeong;Kim, Su-In;Kim, Hong-Gi;Park, Myeong-Jun;Lee, Chang-U
Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.175.2-175.2
/
2015
이 연구는 nano-indenter를 중심으로 박막의 nano-electrotribology 분석 연구로 Hafnium Nitride (HfN) 박막의 열처리 시 열적안정성에 대한 연구를 진행하였다. HfN 박막은 Copper (Cu)와 Silicon (Si)의 계면 확산방지막으로 사용될 수 있는 박막으로 현재 많은 연구소에서 다양한 연구가 진행되고 있다. HfN 박막은 Si (100)기판 위에 rf magnetron sputter로 증착되었다. 증착 시 Ar, $N_2$ 가스유량을 총 40 sccm 사용하였고 증착 후 HfN 박막을 질소분위기 furnace에서 500, $700^{\circ}C$로 각각 30분 동안 열처리 하였다. 열처리 전 후의 시료를 nano-indenter를 이용하여 nano-electrotribology 분석을 실시하였다. Nano-indenter 측정결과 열처리 전 HfN 박막 시료의 표면강도는 39.68 GPa였고 500oC 열처리 후 31.31 GPa로 감소하였다. 그러나 $700^{\circ}C$ 열처리 시 표면강도가 37.89 GPa로 다시 증가하였다. 탄성계수 측정결과도 이와 같은 경향을 나타내었는데, $500^{\circ}C$ 열처리 전 후 탄성계수가 258.99 GPa에서 201.88 GPa로 감소하였고 $700^{\circ}C$ 열처리 시 247.55 GPa로 다시 증가하였다. 이는 $500^{\circ}C$ 열처리하였을 때 박막 내에 흡착되었던 $N_2$ 가스가 빠져나가며 tensile stress가 발생하여 박막의 표면강도 감소를 유발했고 $700^{\circ}C$ 열처리 시 다시 박막 표면이 안정화되었기 때문으로 생각된다. 이를 통해 열처리 온도 변화에 의한 질소효과가 나타나 HfN 박막 표면의 물성이 달라지는 것을 확인하였다.
Proceedings of the Korean Society of Precision Engineering Conference
/
2003.06a
/
pp.628-631
/
2003
This study describes a new mastless nano-fabrication technique of Pyrex 7740 glass using the combination of nanomachining by nano-indenter XP and HF wet etching. First, the surface of a Pyrex 7740 glass specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by HF solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact. some sample structures were fabricated.
Proceedings of the Korean Society for Technology of Plasticity Conference
/
2003.05a
/
pp.448-451
/
2003
This study describes a new maskless nano-fabrication technique of Si (100) using the combination of nanometer-scale mechanical forming by nano-indenter XP and KOH wet etching. First the surface of a Si (100) specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by KOH solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact, some sample structures were fabricated.
Due to the decrease of line width and increase of the integration level of the device, it is expected that 'Bottom-up' method will replace currently used 'Top-down' method. Researches about 'Bottom-up' device production such as Nanowires and Nanobelts are widely held on. To utilize these technologies in devices, properties of matter should be exactly measured. Nano-indenters are used to measure the properties of nano-scale structures. Additionally, Nano-indenters provide AFM(Atomic Force Microscopy) function to get the image of the surface and get physical properties for exact position of nano-structure using this image. However, nano-indenter tips have relatively much bigger size than ordinary AFM probes, there occurs considerable error in surface image by Nano-Indenter. Accordingly, this research used 50nm Berkovich tip and 1um $90^{\circ}$ Conical tip, which are commonly used in Nano-Indenter. To find out the surface characteristics for each kind of tip, we indented the surface of thin layer by each tip and compared surface image and indentation depth. Then, we got image of 100nm-size structure by surface scanning using Nano-Indenter and compared it with surface image gained by current AFM technology. We calculated the errors between two images and compared it with theoretical error.
Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.177.2-177.2
/
2015
Nano-mechanics 연구는 기판의 나노표면에 대하여 indenter tip을 직접 인가하여 측정함으로써 기존 분광학 연구에서는 불가능했던 박막의 기계적 특성 연구가 가능하다. 그러나 박막분석 특성상 박막의 표면, 기판 또는 하부 박막에 의한 영향으로 인해 박막의 고유한 물성특성 연구에 제약이 있다. 박막 표면에 의한 영향인 표면효과는 nano-indentation을 실행 할 때 tip의 압입으로 발생되는 표면의 스트레스로 인해 표면 변형이 나타나는 현상이다. 반면에 하부 박막과 기판에 의한 오류는 nano-indentation 실행 시 tip의 압입 깊이가 깊어질수록 하부박막 또는 기판과 가까워지기 때문에 박막 고유의 특성이 아닌 하부박막과 기판에 의한 영향이 같이 나타나는 현상이다. 이러한 오류를 최소화 하고자 많은 연구에서는 박막의 강도에 따라 nano-indentation의 실행 깊이를 박막 총 두께의 최소7%에서 최대 50%까지 삽입하는 방법을 도입하였다. 이를 기반으로 본 연구는 Zirconium nitride (ZrN) 박막의 증착된 두께 깊이만큼 nano-indentation 분석을 실행 하였으며 박막 고유의 nano-mechanics 특성을 연구 하였다. ZrN 박막은 hard coating 분야에 많이 사용되는 물질로 박막 고유의 hardness를 연구하는 것이 큰 의미가 있다. 연구 결과 모든 박막은 두께 30% 깊이 측정에서 박막 표면과 기판효과가 최소화된 박막의 물성 측정이 가능 하였고, 증착 시 질소를 0.5, 1, 2 sccm 흘려준 박막들은 총 두께 30% 깊이에서 hardness가 각각 23.2, 8.6, 18 GPa이었다. 따라서 nano-indenter 측정 시 유효한 측정 깊이에서 측정을 실시하는 것이, 박막의 물성분석에 있어서 대단히 중요함을 확인 하였다.
Park, Myeong-Jun;Kim, Seong-Jun;Kim, Su-In;Lee, Chang-U
Proceedings of the Korean Vacuum Society Conference
/
2014.02a
/
pp.354.1-354.1
/
2014
Hafnium nitride (HfN) 박막은 고온에서의 안정성과 낮은 비저항 그리고 산소확산에 대한 억제력을 가지고 있기 때문에 확산방지막으로 많은 연구가 진행 되고 있다. 현재까지 진행된 대부분의 연구는 HfN 박막의 전기적인 특성과 구조적인 특성에 대한 것이었고 다양한 연구 결과가 보고되었다. 하지만 기존의 연구들은 박막의 nano-electrotribology 특성에 대한 연구가 부족하여 박막 적층 공정시 요구되는 물성에 대한 연구가 절실하다. 따라서 본 연구에서는 HfN 박막의 증착조건 및 열처리조건에 따른 nano-electrotribology 특성 변화를 확인하고자 하였다. HfN박막은 rf magnetron sputter를 이용하여 Si 기판위에 Hf target으로 질소 유량을 변화시키며 증착하였고 가열로에서 $600^{\circ}C$와 $800^{\circ}C$로 20분간 열처리를 실시하였다. 열처리한 박막과 as-deposited 상태의 박막을 nano-indenter를 통하여 나노기계 전기적인 특성을 분석하였다. nano-indenter는 박막에 인가된 stress와 탄성계수(elastic modulus), 표면경도(surface hardness)와 같은 특성을 직접적인 tip 접촉을 통하여 in-situ로 분석할 수 있는 장비이다. 실험결과 HfN박막을 $600^{\circ}C$로 열처리 한 경우 표면경도가 16.20에서 18.59 GPa로 증가하였다. 표면경도의 증가는 열처리 시 박막내에 compressive stress가 생성되었기 때문이라고 생각된다. 그러나 $800^{\circ}C$로 열처리 한 경우 표면경도가 16.93 GPa로 감소하였는데 이는 표면균열 발생으로 인한 stress relaxation 때문인 것으로 생각된다. 증착 시 주입되는 질소의 유량과 열처리 온도는 HfN박막의 기계적 안정성에 영향을 미치는 중요한 요소임을 본 실험을 통해 확인하였다.
Proceedings of the Korean Vacuum Society Conference
/
2010.08a
/
pp.182-182
/
2010
나노 소재의 물성을 측정하기 위하여 대부분의 연구 구룹에서는 크게 두 가지 분석 기법인 분광학을 이용한 분석과 나노트라이볼로지를 이용한 분석을 사용하고 있다. 분광학을 이용한 분석에는 NMR, IR, Raman, SEM, TEM 등이 대표적이라 할 수 있고, 나노트라이볼로지를 이용한 분석에는 AFM, EFM, KFM, Nano-indenter 등의 탐침을 이용한 측정 기법이 대표적이다. Nano-indenter는 물질의 탄성 및 경도를 측정 할 수 있으며 이를 통해 물질의 특성을 연구하는데에 사용된다. 그러나 이런 Nano-indenter의 압입 실험에서는 그 결과값이 압입 조건 등의 통제변수의 함수가 될 것이다. 이를 확인하고 변화값의 parameter를 추출하기 위하여 본 실험에서는 이런 압입 조건 중 Load - Hold - Unload force의 속도 및 시간을 변화시켜 물질의 탄성계수와 경도가 어떻게 변하는지에 대한 역학관계를 연구하였다.
Kim, Su-In;Lee, Jae-Hun;Kim, Hong-Gi;Kim, Sang-Jin;Seo, Sang-Il;Hwang, Byeong-Hyeon;O, Sang-Ryong;Kim, Nam-Heon;Lee, Chang-U
Proceedings of the Korean Vacuum Society Conference
/
2015.08a
/
pp.176.1-176.1
/
2015
본 연구는 플라즈마 건식 식각 후 박막의 물성 특성 변화 측정에 Nano-Indentation 분석 기법을 도입하였으며, 식각 후 박막 표면 강도를 nano 영역에서 측정하여 박막 표면의 damage 분석에 적용하여 물리적인 해석을 시도하였다. 하지만 기판의 대면적화로 인하여 반도체 공정에 사용되는 기판은 300 mm로 증가하였고 이로 인하여 플라즈마 건식 식각에서 대면적에 대한 균일도 향상 연구를 진행 중에 있다. 이 연구에서는 플라즈마 건식 식각 후 박막의 균일도를 Nano-indenter 측정 결과를 기반으로 Weibull 분포 해석을 통하여 정량적인 균일도를 측정하고자 하였다. 플라즈마 건식 식각을 위하여 플라즈마 소스는 Adaptively Coupled Plasma (ACP)를 사용하였고 식각 후 TEOS $SiO_2$ 박막 표면을 분석하기 위하여, 시료 평면의 x, y 축에 대하여 각각 $20{\mu}m$로 indent 각 지점을 이격하여 동일한 측정 조건에서 Nano-indenter를 이용하여 박막 표면의 강도를 측정하였다. 측정된 결과는 Weibull 분포를 활용하여 정량화하였다. 결과에 의하면 플라즈마 소스의 bias 파워가 300 W 일 때 균일도가 가장 높은 29.84로 측정되었고, 150 W 일 때 가장 낮은 8.38로 측정되었다. 식각 전 TEOS $SiO_2$ 박막의 Weibull 분포에 의한 균일도가 17.93으로 측정됨을 기반으로 ACP 플라즈마 소스의 식각 조건에 따라 TEOS $SiO_2$ 박막의 균일도가 상대적으로 변함을 정량적으로 분석할 수 있었다.
Park, Myeong-Jun;Kim, Su-In;Kim, Gyeong-Jin;Park, Yun-Ha;Lee, Chang-U
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.216.2-216.2
/
2013
Nano-indenter는 팁을 박막 표면으로부터 일정 깊이까지 일정한 비율로 힘을 팁에 인가하여 그에 따른 박막의 반응을 in-situ로 확인하기 위하여 고안된 장치이며, 박막은 물론 나노 구조물까지 다양한 범위에서 기계적 특성을 분석하기 위하여 사용되고 있다. 이 연구에서는 유전체 및 확산방지막으로 사용되는 Hf을 rf magnetron sputter로 증착하였으며 이때 Ar 가스와 함께 $N_2$ 가스의 혼합 비율을 다르게 하여 HfN을 증착하였다. 질소 분압에 따라 증착된 HfN 박막은 고온중에서 질소의 영향을 확인하기 위하여 $800^{\circ}C$로 질소 분위기에서 20분간 열처리하여 이후 박막의 nano-mechanical 특성을 nanoindenter를 사용하여 확인하였고 최대 압입력을 250 ${\mu}N$으로 고정하였다. 측정결과 고온 열처리후 HfN 박막은 증착시 질소 분압이 0%에서 5%로 증가함에 따라 surface hardness는 8.6 GPa에서 8.1 GPa로 elastic modulus는 123.7 GPa에서 134 GPa로 각각 변화되는 것을 확인할 수 있었다. 특히, 질소 분압이 2.5%로 증착된 HfN 박막은 열처리후 박막 표면의 물리적 특성이 깊이 방향으로 층을 이루고 있어 nano-indenter 압입시 다수의 pop-in이 나타남을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.