• Title/Summary/Keyword: Nano safety

Search Result 220, Processing Time 0.023 seconds

Development of Integrated Design System for Automotive Rubber Components (자동차 방진고무부품 통합설계시스템 개발)

  • Woo, Chang-Su;Kim, Wan-Doo;Park, Hyung-Sung;Shin, Wae-Gi
    • Elastomers and Composites
    • /
    • v.47 no.3
    • /
    • pp.188-193
    • /
    • 2012
  • The fatigue analysis and lifetime evaluation are very important in design procedure to assure the safety and reliability of the rubber components. Recently, the design, analysis and evaluation technology was required to achieve the high quality, fidelity, reliability of rubber products. However, rubber manufacturing companies of our country have uesd the method of trial and error and experience in the process of a compound mixing, manufacturing and improvement of rubber properties. The objectives of this study are to establish the test methods of rubber material and to make the database of rubber material properties and to evaluate the performance of rubber components and to construct the prediction system of fatigue life. Fatigue lifetime prediction methodology of the rubber component was proposed by incorporating the finite element analysis and fatigue damage parameter from fatigue test.

Development of Nano Carbon Tile for Far-Infrared Thermotherapy Effect (원적외선 온열효과를 위한 나노탄소타일 개발)

  • Yoon, Dal-Hwan;Uhm, Woo-Yong
    • Journal of IKEEE
    • /
    • v.21 no.1
    • /
    • pp.24-29
    • /
    • 2017
  • In this paper, we have developed the nano carbon tile and chip which is based on a reducing process of oxidation and the viscous fluid control, after hardening to the stylene monomer and methylol acrylamide monomer using an acrylic emulsion junction material. Then we can obtain the sphere form structure of diagonal 1~3 mm, they have mixture the acrylic emulsion junction material(45%) and the coconut carbon powder(55%) of size 300~500 mesh for 25~30 min. Finally, if we have dry for the formated carbon including 30~90 minute at $90{\sim}300^{\circ}C$, then be obtained for pure carbon formation of 95%. In order to identify the safety of the friendly circumstance carbon formation, we have tested the far-infrared ratio, energy analysis, gas density and anti-disease germs experiment.

Environment Adaptive Emergency Evacuation Route GUIDE through Digital Signage Systems

  • Lee, Dongwoo;Kim, Daehyun;Lee, Junghoon;Lee, Seungyoun;Hwang, Hyunsuk;Mariappan, Vinayagam;Lee, Minwoo;Cha, Jaesang
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.90-97
    • /
    • 2017
  • Nowadays, the most of commercial buildings are build-out with complex architecture and decorated with more complicated interiors of buildings so establishing intelligible escape routes becomes an important case of fire or other emergency in a limited time. The commercial buildings are already equipped with multiple exit signs and these exit signs may create confusion and leads the people into different directions under emergency. This can jeopardize the emergency situation into a chaotic state, especially in a complex layout buildings. There are many research focused on implementing different approached to improve the exit sign system with better visual navigating effects, such as the use of laser beams, the combination of audio and video cues, etc. However the digital signage system based emergency exit sign management is one of the best solution to guide people under emergency situations to escape. This research paper, propose an intelligent evacuation route GUIDE that uses the combination centralized Wireless Sensor Networks (WSN) and digital signage for people safety and avoids dangers from emergency conditions. This proposed system applies WSN to detect the environment condition in the building and uses an evacuation algorithm to estimate the safe route to escape using the sensor information and then activates the signage system to display the safe evacuation route instruction GUIDE according to the location the signage system is installed. This paper presented the prototype of the proposed signage system and execution time to find the route with future research directions. The proposed system provides a natural intelligent evacuation route interface for self or remote operation in facility management to efficiently GUIDE people to the safe exit under emergency conditions.

Pyrolysis Hazard for Nano and Micro-sized Aluminium Dusts (알루미늄 나노 및 마이크로 입자의 열분해 위험성)

  • Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.75-80
    • /
    • 2015
  • Aluminum dusts, from micro to nano-scale, are widely used in various applications such as propulsion and pyrotechnic compounds because of high burning rate. In this study, the pyrolysis hazard of aluminum dusts with different median size (sized by 70 nm, 100 nm, $6{\mu}m$, $15{\mu}m$) were investigated experimentally. The thermal decomposition characteristics of aluminum dusts with the variation of heating rate were investigated using TGA (Thermo gravimetric analysis) and was estimated the minimum ignition temperature from temperature of weight gain in nano and micro-sized aluminum dusts with different diameter. In the same condition of heating rate, the temperature of weight gain in aluminum dust layers increased with increasing of particle size and increased with increasing of heating rates in air. From the results, it was estimated that the pyrolysis hazard of aluminum dusts decrease with increasing of mean diameter.

Ethical Issues in Nanomaterials Technology and Relevant Policy Recommendations (나노재료기술의 윤리적 고찰과 관련 정책제안)

  • Lee, Jung-Il;Lee, Jung-Won;Han, Il-Ki;Chung, Yoon-Suhn;Suh, Sang-Hee
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.6
    • /
    • pp.397-407
    • /
    • 2010
  • For sustainable and responsible development of nanomaterials technology, the establishment of ethical system for sound social acceptance of the technology as well as the development of the technology itself is necessary. In this paper, global efforts to identify and resolve the ethical issues regarding nanotechnology is reviewed, in particular the environmental, health and safety issues in nanomaterials, and the tools such as communication and engagement of stakeholders, regulations, certifications and workplace guidelines are scrutinized. Finally the policy recommendations for the establishment of ethical systems for safe usage of nanomaterials.

Designing of a Novel Core-Shell-Structured Co-free Cathode Material with Enhanced Thermal and Structural Stability for Lithium Ion Batteries

  • Shin, Ji-Woong;Nam, Yun-Chae;Son, Jong-Tae
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.4
    • /
    • pp.172-176
    • /
    • 2019
  • The first commercialized cathode material, $LiCoO_2$, suffers from disadvantages such as high cost and toxicity and also possesses safety problems. The nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material, used as an alternative to $LiCoO_2$, has highly reversible capacity and high energy density. So, the nickel-rich $LiNi_{0.9}Mn_{0.1}O_2$ cathode material is widely used as an alternative to $LiCoO_2$ due to its highly reversible capacity and high energy density. However, $LiNi_{0.9}Mn_{0.1}O_2$ has several disadvantages as well, such as poor cycle performance and poor thermal instability. To address these problems, we synthesized a new material, $LiNi_{0.5}Mn_{0.5}O_2$, as a shell on the surface of a core to suppress the surface degradation. The new material showed high structural and thermal stabilities and could also maintain a high capacity. The capacity retention of the core-shell cathode (87.7%) was better than that of the core cathode (76.9%) after 50 cycles. Analysis using differential scanning calorimetry revealed that the heat generation in the core-shell cathode ($65.9Jg^{-1}$) was lower than that in the core cathode ($559.7Jg^{-1}$).

Development and Prospect of Emulsion Technology in Cosmetics (화장품에서 유화기술의 발전 및 전망)

  • Kyong, Kee-Yeol;Lee, Cheon-Koo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.32 no.4 s.59
    • /
    • pp.209-217
    • /
    • 2006
  • Emulsion is a dispersion system among liquids which are not miscible together. There are numerous cosmetic raw materials which have different physicochemical properties. Therefore, emulsion technology is very useful in cosmetics. With the development of emulsifier, several emulsification technologies have been developed. Since HLB method by Griffin in 1950's, PIT method, gel method, and D-phase methods, etc, have been developed. Recently, the application of natural emulsifier and polymeric emulsifier increases in cosmetics in order to achieve enhanced safety and biocompatibility. Besides nano-emulsion, multiple-emulsion, liquid crystal emulsion, and Pickering emulsion have been developed and applied as means of differentiating appearance and texture of products and achieving enhanced delivery of active ingredients. Meanwhile, the application studies of nano-dispersed structural system such as liposome or cubosome are on progress. Liposome is a bi- or multi-lamella layer dispersion system composed of amhiphilic molecules - phospholipids which are main components of plasma membrane. Cubosome also is a nano-sized dispersion system composed of a specific molecule like glyceryl monoloeate derived from natural products. And it has a cubic bicontinuous structure in water due to its unique molecular structure. Incorporating compounds (active materials) into such nano-particles can increase biocompatibility and delivery efficiency of target compounds. Manufacturing process and application of cosmetic emulsions and nano-particles are briefly introduced in this paper.

Suggestion of Physicochemical Characteristics and Safety Management in the Waste Containing Nanomaterials from Engineered Nano-materials Manufacturing Plants and Waste Treatment Facilities (산업용제조시설과 폐기물처리시설에서 발생된 나노폐기물의 물리화학적 특성 및 안전관리방안 제시)

  • Kim, Woo-Il;Yeon, Jin-Mo;Cho, Na-Hyeon;Kim, Yong-Jun;Um, Nam-Il;Kim, Ki-Heon;Lee, Young-Kee
    • Journal of Korea Society of Waste Management
    • /
    • v.35 no.7
    • /
    • pp.670-682
    • /
    • 2018
  • Engineered nanomaterials (ENMs) can be released to humans and the environment through the generation of waste containing engineered nanomaterials (WCNMs) and the use and disposal of nano-products. Nanoparticles can also be introduced intentionally or unintentionally into waste streams. This study examined WCNMs in domestic industries, and target nanomaterials, such as silicon dioxide, titanium oxide, zinc oxide, nano silver, and carbon nanotubes (CNTs), were selected. We tested 48 samples, such as dust, sludge, ash, and by-products from manufacturing facilities and waste treatment facilities. We analyzed leaching and content concentrations for heavy metals and hazardous constituents of the waste. Chemical compositions were also measured by XRD and XRF, and the unique properties of nano-waste were identified by using a particle size distribution analyzer and TEM. The dust and sludge generated from manufacturing facilities and the use of nanomaterials showed higher concentrations of metals such as lead, arsenic, chromium, barium, and zinc. Oiled cloths from facilities using nano silver revealed high concentrations of copper, and the leaching concentrations of copper and lead in fly ash were higher than those in bottom ash. In XRF measurements at the facilities, we detected compounds such as silicon dioxide, sulfur trioxide, calcium oxide, titanium dioxide, and zinc oxide. We found several chemicals such as calcium oxide and silicon dioxide in the bottom ash of waste incinerators.

A Study on the Actual Condition of the Obstacles on the Apartment Escape Stairs and the Perception of Residents (아파트 피난계단에 적치된 장애물의 실태와 입주민의 피난계단 관리에 대한 인식에 관한 연구)

  • Lee, Wonjoo;Lee, Chang-Seop;Lee, Kiyoung
    • Fire Science and Engineering
    • /
    • v.31 no.1
    • /
    • pp.116-123
    • /
    • 2017
  • The purpose of this paper is to improve the evacuation stability of residents in apartment fire. For this purpose, the actual condition survey about the obstacles was conducted on 3,056 escape stairs in the 183 apartments. In addition, the questionnaire investigation was carried out a survey targeting the residents of apartments about their experience of fire safety education, perception on safety management of escape stairs, and perception on fire safety. As a result of investigation, we confirmed that the obstacles were formed in the 1,916 escape stairs among the 3,056 escape stairs of the 183 apartments (percent of barricades in escape stairs: 62.70%). Furthermore, it showed that fire safety education experience was found to be 83.10% of subject. The perception on safety management of the subjects in the escape step and the perception on fire safety were $3.84{\pm}0.75%$, and $3.49{\pm}0.61$, respectively. In the results, most of the subjects had a fire safety education and knew how to safety management the escape stairs but, the practice of the safety management action was low. Based on the results in the paper, the policy proposal is that the fire safety education is emphasized to change from the perception to action.

Improvement of the Occupational Safety and Health Act by the Comparison of the Domestic and Foreign Radon-related Policies (국내·외 라돈 관련 제도 비교를 통한 산업안전보건법 개선방안)

  • Lim, Dae Sung;Kim, Ki-Youn;Cho, Yong Min;Seo, Sung Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.31 no.3
    • /
    • pp.226-236
    • /
    • 2021
  • Objectives: Concerns have been raised about the possible health effects of radon on both workers and consumers with the spread of social attention to the impact of radon exposure. Thus, an entire raw material handling workshop was investigated, and standards for radon levels in the workplace were newly established at 600 Bq/m3. However, regulations on the management of workers exposed to radon are still insufficiently developed. Therefore, by comparative analysis of overseas and domestic radon-related regulations for workplaces, this study aims to suggest improvement plans of protection regulations under the Occupational Safety and Health Act (OSH Act) for the prevention of health disorders of radon-exposed workers. Methods: For overseas case studies, we consulted radon-related laws and reports officially published on the websites of the European Union (EU), the United States (U.S.) and the United Kingdom (UK) government agencies. Domestic law studies were conducted mainly on the Act on Protective Action Guidelines against Radiation in the Natural Environment and the OSH Act. Results: In Europe, the basic safety standards for protection against risks arising from radon (Council Directive 2013/59/EURATOM of 5 December 2013) was established by the EU. They recommend that the Member States manage radon level in workplaces based on this criterion. In the U.S., the standards for workplaces are controlled by the Occupational Safety and Health Administration (OSHA) and the Mine Safety and Health Administration (MSHA). Action on radon in the UK is specified in "Radon in the workplace" published by the Health and Safety Executive (HSE). Conclusions: The Act on Protective Action Guidelines against Radiation in the Natural Environment mainly refers to the management of workplaces that use or handle raw materials but does not have any provisions in terms of protecting naturally exposed workers. In the OSH Act, it is necessary to define whether radon is included in radiation for that reason that its current regulations have limitations in ensuring the safety workers who may be exposed to naturally occurring radon. The management standards are needed for workplaces that do not directly deal with radon but are likely to be exposed to radon. We propose that this could be specified in the regulations for the prevention of health damage caused by radiation, not in Article 125 of the OSH Act.