• 제목/요약/키워드: Nano positioning

검색결과 72건 처리시간 0.026초

주사 현미경용 평면 스캐너 Part 1 :설계 및 정 · 동특성 해석 (A Flexure Guided Planar Scanner for Scanning Probe Microscope ; Part 1 : Design and Analysis of Static and Dynamic Properties)

  • 이동연;이무연
    • 한국소음진동공학회논문집
    • /
    • 제15권6호
    • /
    • pp.667-673
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program.

An Intelligent Nano-positioning Control System Driven by an Ultrasonic Motor

  • Fan, Kuang-Chao;Lai, Zi-Fa
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권3호
    • /
    • pp.40-45
    • /
    • 2008
  • This paper presents a linear positioning system and its control algorithm design with nano accuracy/resolution. The basic linear stage structure is driven by an ultrasonic motor and its displacement feedback is detected by a LDGI (Laser Diffraction Grating Interferometer), which can achieve nanometer resolution. Due to the friction driving property of the ultrasonic motor, the driving situation differs in various ranges along the travel. Experiments have been carried out in order to observe and realize the phenomena of the three main driving modes: AC mode (for mm motion), Gate mode (for ${\mu}m$ motion), and DC mode (for nm motion). A proposed FCMAC (Fuzzy Cerebella Model Articulation Controller) control algorithm is implemented for manipulating and predicting the velocity variation during the motion of each mode respectively. The PCbased integral positioning system is built up with a NI DAQ Device by a BCB (Borland $C^{++}$ Builder) program to accomplish the purpose of an intelligent nanopositioning control.

나노 스테이지에 대한 슬라이딩-모드 제어 기반의 강인 최적 제어기 설계 (Design of Robust Optimal Controller for Nano Stage using Sliding-mode Control)

  • 최인성;최승옥;유관호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.101-103
    • /
    • 2007
  • In this paper. we design a robust optimal controller for ultra-precision positioning system. Generally, it is hard to control the nanometric scale positioning system because of the parameter uncertainties and external disturbances. To solve this problem. we suggest a control algorithm based on the modified sliding-mode control and the LQ control in an augmented system. The augmented system is composed of additional state variables: state estimates and control input in the nominal system. Through comparison with LQ optimal control, it is verified that the proposed control algorithm is more robust to the unexpected parameter variations and external noises.

  • PDF

광소자 정렬용 극초정밀 다축 위치 제어장치 개발 (Development of Multi-axis Nano Positioning Stage for Optical Alignment)

  • 정상화;이경형;차경래;김현욱;최석봉;김광호;박준호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.304-307
    • /
    • 2004
  • As optical fiber communication grows, the fiber alignment become the focus of industrial attention. This greatly influence the overall production rates for the opto-electric products. We proposed multi-axis nano positioning stage for optical fiber alignment. This device has 3 DOF translation and sub nanometer resolution. This nano stage consist of 3 PZT-driven flexure stages which are stacked parallel. The displacement of it is measured with capacitance gauge and is controlled by computer-embedded main controller. The design process of flexure stage using FEM is proposed and the performance evaluation of this system is verified with experiments.

  • PDF

평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발 (The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

나노위치제어용 선형 모터의 거동 분석

  • 설진수;이우영;임경화
    • 한국반도체및디스플레이장비학회:학술대회논문집
    • /
    • 한국반도체및디스플레이장비학회 2005년도 춘계 학술대회
    • /
    • pp.125-128
    • /
    • 2005
  • The equipments in semi-conductor, display and measurement fields require high precision and resolution positioning technology. High positioning control can be carried out by using linear motors with little vibration, backlash and friction. In this paper, the acceleration patterns of the moving Part are analyzed to obtain the optimum pattern which leads to the less vibration reduction of equipment. In addition, the effect of friction force in guide rail on position control accuracy is investigated to identify possibility of using current bearing system for nano-positioning control.

  • PDF

Performance assessment of an ultraprecision machine tool positioning system with a friction drive

  • Song Chang-Kyu;Shin Young-Jae;Lee Hu-sang
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제6권3호
    • /
    • pp.8-12
    • /
    • 2005
  • The positioning system for an ultra precision machine tool must be accurate to the order of a nanometer. Various feed drive devices have been proposed to achieve this resolution; currently, most attention is directed towards hydrostatic lead screws and friction drives. It has been reported that a positioning resolution accurate to an angstrom can be achieved using a twist-roller friction drive. Therefore, we manufactured an ultra precision positioning system driven by a twist-roller friction drive and assessed its performance when defining problems and finding solutions. Our study showed that the twist-roller friction drive is mechanically suitable for ultra precision positioning, but some considerations are required to obtain a higher resolution.

초정밀 3축 이송 스테이지의 개발 :2. 동특성 실험 및 성능 평가 (Development of a 3-axis fine positioning stage : Part 2. Experiments and performance evaluation)

  • 강중옥;김만달;백석;한창수;홍성욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1207-1210
    • /
    • 2003
  • This paper deals with experiments for dynamic characteristics and performance evaluation of the 3-axis fine positioning stage developed in [1]. The features of the developed fine positioning stage are the long stroke due to the magnetically preloaded PZT actuators, the minimum motion crosstalk due to the use of a ball contact mechanism and the compact design. The dynamic characteristics of the actuator and the stage are tested with the preload changed in order to validate the actuator and the stage design. Performance evaluation is also made for the PZT actuators as well as the stage positioning accuracy. Experimental results show that the developed stage is accurate enough to be used for nanometer positioning.

  • PDF

기계적 비선형 변조기를 이용한 디지털 구동의 안정화와 나노 구동정도 구현을 위한 디지털 마이크로액추에이터 (Mechanically Modulated Nonlinear Digital Microactuators for Purified Digital Stroke and Nano-Precision Actuation)

  • 이원철;진영현;조영호
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.1990-1996
    • /
    • 2004
  • This paper presents a nonlinearly modulated digital actuator (NMDA) for producing nano-precision digital stroke. The NMDA, composed of a digital microactuator and a nonlinear micromechanical modulator, purifies the stroke of the digital actuator in order to generate the high-precision displacement output required for nano-positioning devices. The function and concept of the nonlinear micromechanical modulator are equivalent to those of the nonlinear electrical limiters. The linear and nonlinear modulators, having an identical input and output strokes of 15.2${\mu}{\textrm}{m}$ and 5.4${\mu}{\textrm}{m}$, are designed, fabricated and tested, respectively. The linear and nonlinear modulators are linked to identical digital actuators in order to compare the characteristics of the linearly modulated microactuator (LMDA) and NMDA. In addition, an identical linear modulator is attached to the output ports of LMDA and NMDA. The NMDA shows the repeatability of 12.3$\pm$2.9nm, superior to that of 27.8$\pm$2.9nm achieved by LMDA. When the identical linear modulator is connected to LMDA and NMDA, the final modulated output from NMDA shows the repeatability of 10.3$\pm$7.2nm, superior to that of 15.7$\pm$7.7nm from LMDA. We experimentally verify the displacement purifying capability of the nonlinear mechanical modulator, applicable to nano-precision positioning devices and systems.

초정밀 평면 X-Y 스테이지의 최적제어기 설계 (Optimal Design of Controller for Ultra-Precision Plane X-Y Stage)

  • 곽이구;김재열;양동조;고명수;유신;김기태
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.342-347
    • /
    • 2002
  • After the industrial revolution in 20 century, the world are preparing for new revolution that is society with knowledge for a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. Performance test of servo control system that is used ultra-precision positioning system with single plane X-Y stage is performed by simulation with Matlab. Analyzed for previous control algorithm and adapted for modern control theory, dual servo algorithm is developed by minimum order observer, and stability and priority on controller are secured. Through the simulation and experiments on ultra precision positioning, stability and priority on ultra-precision positioning system with single plane X-Y stage and control algorithm are secured by using Matlab with Simulink and ControlDesk made in dSPACE

  • PDF