• 제목/요약/키워드: Nano positioning

검색결과 72건 처리시간 0.024초

Min-Max 알고리즘을 이용한 피에조 구동형 스테이지의 최적설계 및 성능평가 (Optimal Design and Performance Evaluation of PZT-driven Stage Using Min-Max Algorithm)

  • 최기봉;한창수
    • 한국정밀공학회지
    • /
    • 제22권9호
    • /
    • pp.130-136
    • /
    • 2005
  • This paper presents an optimal design and the performance evaluation of two-axis nano positioning stage with round notched flexure hinges. A flexure hinge mechanism with round notched flexure hinges is to guide the linear motions of a moving plate in the nano positioning stage. A Min-Max algorithm is applied to the design of the flexure hinge mechanism for nano positioning stage. In the design process, the structure of the flexure hinge mechanism is fixed, then the radius of a round hole and the width of two round holes are chosen as design variables, and finally the do sign variables are calculated by the Min-Max algorithm. The machined flexure hinge mechanism, stack type PZTs for actuation and capacitance type displacement sensors for position measurement are assembled into the nano positioning stage. The experimental results of the manufactured nano positioning stage show the first modal resonance frequency of 197 Hz, the operating range of 40 um, and the resolution of 3 nm.

Nanometer positioning control using nonlinear dynamics of rolling guide

  • Futami, Shigeru;Furutani, Akihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.1312-1315
    • /
    • 1990
  • Nanometer positioning control with high velocity and long stroke is discussed. A one-axis stage mechanism driven by an AC linear motor and guided by a rolling ball guide has been constructed. Coarse and fine position controls are designed by using nonlinear dynamics of the rolling guide. Switching from coarse positioning to fine positioning is studied.

  • PDF

An Education Model of a Nano-Positioning System for Mechanical Engineers

  • Lee Dong-Yeon;Gweon Dae-Gab
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1702-1715
    • /
    • 2006
  • The increasing use of nano-positioners in a wide variety of laboratory and industrial applications has created a need for nano-mechatronics education in all engineering disciplines. The subject of nano-mechatronics is broad and interdisciplinary. This article focuses on the way nano-mechatronics is taught in department of mechanical engineering at Korea Advanced Institute of Science and Technology (KAIST). As one model of nano-positioning systems, design and experimental methodology is presented in this article. For design phase, the stiffness and resonant frequencies are found analytically and verified by using a commercial finite element analysis program. Next, for experimental phase, various tests are performed to access the performances of the designed nano-positioner, for example, sine-tracking, multi-step response and travel-range check etc. Finally, the definition of 'separation frequency' is described and some comments are discussed.

A Hybrid of Smartphone Camera and Basestation Wide-area Indoor Positioning Method

  • Jiao, Jichao;Deng, Zhongliang;Xu, Lianming;Li, Fei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권2호
    • /
    • pp.723-743
    • /
    • 2016
  • Indoor positioning is considered an enabler for a variety of applications, the demand for an indoor positioning service has also been accelerated. That is because that people spend most of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is an efficient platform for navigation and positioning. However, for high accuracy indoor positioning by using a smartphone, there are two constraints that includes: (1) limited computational and memory resources of smartphone; (2) users' moving in large buildings. To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning information includes horizontal and altitude information for assisting smartphone camera-based positioning. Moreover, a unified representation model of image features under variety of scenarios whose name is FAST-SURF is established for computing the fine location. Finally, an optimization marginalized particle filter is proposed for fusing the positioning information from TC-OFDM and images. The experimental result shows that the wide location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to the WiFi-based and ibeacon-based positioning methods, our method is powerful while being easy to be deployed and optimized.

압전 액츄에이터를 이용한 초정밀 위치제어장치 개발 (Development of Nano Positioning Stage using PZT Actuator)

  • 정상화;차경래
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.214-218
    • /
    • 2002
  • In recent years, precision positioning stage is demanded for some industrial fields such as semi-conductor lithography, ultra precision machining, and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of 3-axis positioning, characteristics of motion and resolution are verified.

  • PDF

고체배 알고리즘을 이용한 초정밀 위치즉정기술 개발 (Development of Ultra-precision Positioning Technology Using High-resolution Interpolation Algorithm)

  • 이종혁;배준영;이상룡
    • 한국정밀공학회지
    • /
    • 제21권11호
    • /
    • pp.117-124
    • /
    • 2004
  • Recently, nano-methodology is increasingly important as the ruler for measuring nano-technology, and we applied the linear encoder to nano-methodology. The quadrature output in the linear encoder has an effect on increasing the resolution in some techniques. Already, various interpolation techniques based on the quadrature signal have applied to the precision servo system. In this paper, we propose a new interpolation algorithm for ultra-precision positioning in the low speed with simulation by MATLAB SIMULINK. This method modified previous methods and was properly designed for some given control system. To verify, we first fulfilled the encoder signal test to find main parameters fer the signal transformation, then we proved the proposed interpolation algorithm by experiments, which show that the result of the interpolation algorithm corresponds with the measurement of the laser interferometer in 100 nm unit approximately. In addition, we can get more precise measurement by more accurate and noise-free signal. So we need to compensate imperfections in the encoder signal. After that, we will apply this algorithm to nano positioning system.

Self Displacement Sensing (SDS) Nano Stage

  • Choi, Soo-Chang;Park, Jeong-Woo;Kim, Yong-Woo;Lee, Deug-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제8권2호
    • /
    • pp.70-74
    • /
    • 2007
  • This paper describes the development of a nano-positioning system for nanoscale science and engineering. Conventional positioning systems, which can be expensive and complicated, require the use of laser interferometers or capacitive transducers to measure nanoscale displacements of the stage. In this study, a new self-displacement sensing (SDS) nano-stage was developed using mechanical magnification of its displacement signal. The SDS nano-stage measured the displacement of its movement using a position-sensitive photodiode (PSPD), a laser source, and a hinge-connected rotating mirror plate. A beam from a laser diode was focused onto the middle of the plate with the rotating mirror. The position variation of the reflected beam from the mirror rotation was then monitored by the PSPD. Finally, the PSPD measured the amplified displacement as opposed to the actual movement of the stage via an optical lever mechanism, providing the ability to more precisely control the nanoscale stage. The displacement amplification process was modeled by structural analysis. The simulation results of the amplification ratio showed that the distance variation between the PSPD and the mirror plate as well as the length L of the mirror plate could be used as the basic design parameters for a SDS nano-stage. The PSPD was originally designed for a total travel range of 30 to 60 mm, and the SDS nano-stage amplified that range by a factor of 15 to 25. Based on these results, a SDS nano-stage was fabricated using principle of displacement amplification.

고속 세틀링과 고정밀 위치 제어를 위한 모드 변경 제어 기법 (A New Mode Switching Control for Fast Settling and High Precision Positioning)

  • 김정재;최영만;김기현;권대갑;홍동표
    • 반도체디스플레이기술학회지
    • /
    • 제5권4호
    • /
    • pp.1-4
    • /
    • 2006
  • Recently, with rapid development of digital media like semiconductor and large flat panel display, the manufacturing equipment is required to have high precision over large travel range. Moreover it should have high product throughput. To achieve high product throughput, a controller should perform fast point-to-point motion and high precision positioning after settling in spite of external disturbances or residual vibrations. We proposed a new mode switching control algorithm with an application to dual stage for long range and high precision positioning. The proposed algorithm uses a proximate time-optimal servomechanism for the fast settling and a time-delay controller for the high precision positioning. Experimental results show that the proposed method enables smooth mode switching and improves the settling time and the precision accuracy after settling by over than 33% and 45%, respectively.

  • PDF

초정밀 다축 위치제어장치 개발 및 보정에 관한 연구 (A Study on the Development and Compensation of precision Multi-Axis Positioning System)

  • 정상화;차경래
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.455-458
    • /
    • 2002
  • In recent years, precision positioning stage is demanded fur some industrial fields such as semi conductor lithography, ultra precision machining and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of it such as 3-axis positioning, characteristic of motion and resolution is verified.

  • PDF