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Abstract 
 

Indoor positioning is considered an enabler for a variety of applications, the demand for an 

indoor positioning service has also been accelerated. That is because that people spend most 

of their time indoor environment. Meanwhile, the smartphone integrated powerful camera is 

an efficient platform for navigation and positioning. However, for high accuracy indoor 

positioning by using a smartphone, there are two constraints that includes: (1) limited 

computational and memory resources of smartphone; (2) users’ moving in large buildings. 

To address those issues, this paper uses the TC-OFDM for calculating the coarse positioning 

information includes horizontal and altitude information for assisting smartphone camera-

based positioning. Moreover, a unified representation model of image features under variety 

of scenarios whose name is FAST-SURF is established for computing the fine location. 

Finally, an optimization marginalized particle filter is proposed for fusing the positioning 

information from TC-OFDM and images. The experimental result shows that the wide 

location detection accuracy is 0.823 m (1σ) at horizontal and 0.5 m at vertical. Comparing to 

the WiFi-based and ibeacon-based positioning methods, our method is powerful while being 

easy to be deployed and optimized. 

 

Keywords: Indoor positioning, smartphone camera, fusion of telecommunication and 

navigation, image feature descriptor, marginalized particle filter  
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1. Introduction 

With the rapid growth in the use of handheld devices such as smartphones and tablets, 

location-based services (LBSs) have become increasingly popular. The demand for an indoor 

positioning service has also accelerated. That is because people spend most of their time 

indoor environment [1]. Over the last decade, researchers have studied many indoor 

positioning techniques [2]. Indoor positioning systems based on wireless local area networks 

are growing rapidly in importance and gaining commercial interest. Moreover, with the 

development of the integrated circuit technology, multi-sensors, for example, camera, Earth’s 

magnetic field, WiFi, Bluetooth, inertial module, have been integrated in smartphones. 

Therefore, smartphones are powerful platforms for location-awareness. At the same time, 

smartphone positioning is an enabling technology that is used to create a new business in the 

navigation and mobile location-based services industries.  

Recently, lots of researchers have been focused on the indoor positioning studies. 

According to the localization performance, indoor positioning is classified into local 

positioning and wide positioning [3], [4] and [5]. Local positioning methods are 

implemented based on wireless local area network. WiFi-based indoor positioning [6] have 

been more widely used in buildings than other local methods like RFID [7], Ultra Wideband 

(UWB) [8], Zigbee [9], Bluetooth [10] and Pseudolite [11]. However, the local methods gain 

a poor accuracy that is more than 5 meters except UWB-based and Pseudolite-based methods 

that are very expensive to be implemented. Furthermore, almost of the local methods can 

only work inside buildings, which make users depend on the GNSS in outdoor positioning. 

Therefore, the popularization of indoor LBS application is seriously limited. 

Wide-area positioning methods are based on cellular network base stations that are widely 

distributed in the world, which have wide indoor signal coverage. 2G/3G/4G mobile 

communication systems can provide indoor location. However, the positioning accuracy is 

too poor to meet most of the requirements due to the interference of Non Line of Sight 

(NLOS) [12], multipath and the poor time synchronization among Base Stations (BSs) [13]. 

The Time & Code Division-Orthogonal Frequency Division Multiplexing (TC-OFDM) 

system, which is a typical navigation and communication integrated system, can achieve 1~3 

meters in horizon and 0.5 meter in vertical. However, in urban canyon environment or inside 

the large buildings, the TC-OFDM signal cannot cover those areas [14]. Moreover, the 

indoor awareness information cannot be obtained by using WLAN-based positioning system 

[15]. Therefore, Wang and her colleges presented a wireless sensor network based indoor 

positioning systems for context-aware applications [16]. In [17], a maximum likelihood-

based fusion algorithm that integrates a typical Wi-Fi indoor positioning system with a PDR 

system was proposed for indoor pedestrian navigation. However, these methods that using 

existing wireless networks have low deployment costs, but the positioning error can be up to 

several meters because of NLOS, multipath and signal attenuation. Therefore, smartphone 

camera-based indoor positioning is a promising approach for accurate indoor positioning 

without the need for expensive infrastructure like access points or beacons. 

More recently, indoor positioning based on images has been popular [18][19][20].  

Meanwhile, all of those research works mainly focus on improving image matching accuracy. 

Some of these algorithms are, however, quite demanding in terms of their computational 

complexity and therefore not suitable to run on mobile devices, which need smartphones 

with high hardware configuration. Although smartphones are inexpensive, they have even 

more limited performance than the aforementioned Tablet PCs. Smartphones are embedded 
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systems with severe limitations in both the computational facilities and memory bandwidth. 

Therefore, natural feature extraction and matching on phones has largely been considered 

prohibitive. To address these issues, we proposed a new image feature detector named 

FAST-SURF.  

This paper proposed a hybrid algorithm combing vision-based positioning approach with 

BSs-assisted approach that was TC-OFDM for wide-area indoor, and this algorithm was 

named TC-Image. First of all, the coarse location is calculated by using TC-OFDM system. 

Then, the silent invariant features are extracted from the images taken by the smartphone 

camera, and feature vectors are built. Third, the fine positioning information can be obtained 

by using an improved matching method. Finally, an improved marginalized particle filter 

(MPF) is used to fusion the positioning results from TC-OFDM and images. The proposed 

algorithm is implemented on Android operation system, and the experiment demonstrates 

that the performance improvement can be achieved. Fig. 1 shows the procedure of our 

algorithm. 
 

 
Fig. 1. Framework of the system 

2. Related Work 

Valgren and his colleague proposed a camera-based outdoor positioning by using SURF 

feature for speeding up the image matching [21]. Li and Wang [22] introduced A-SIFT 
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feature for image matching achieved by RANSAC, which increased the matching accuracy. 

Tian and his co-workers [23] proposed a similar method to [22] for indoor positioning. 

However, those two complex computational methods are not suitable for smartphone based 

indoor positioning. This is because of limited computational resources of mobile devices. 

 

3. The Proposed Algorithm 

How to take advantage of heterogeneous wireless networks (WiFi, Zigbee, RFID, Bluetooth, 

Cellular Network, etc.) to realize the seamless outdoor and indoor positioning in wide area 

based on smartphones has become the hot issues of LBS. Since both kinds of systems have 

their own advantages and disadvantages, a novel particle filter-based fusion algorithm is 

proposed in this paper. In this method, it is to integrate the TC-OFDM indoor positioning 

system with images that taken by using cameras of the smartphones. 

3.1 Coarse positioning based on TC-OFDM 

TC-OFDM is a wide-area indoor and outdoor seamless positioning system based on mobile 

base stations. TC-OFDM system is a typical navigation and communication integrated 

system. The cellular network carries the TC-OFDM signals who multiplex communication 

and navigation signal in same frequency band, which is shown in Fig. 2. 

 

 

 
Fig. 2. Flowchart of TC-OFDM signal generation 

 
 

The wide-area indoor signal coverage is achieved by mobile BSs with high-precise time 

synchronization. Terminals demodulate the TC-OFDM signals and obtain the navigation 

message for positioning. Besides, it can also assist GNSS to enhance the performance and 

robustness for outdoor positioning accuracy and Time To First Fix (TTFF). TC-OFDM 

system can provide seamless indoor and outdoor positioning in wide area with one-meter 

accuracy. Positioning information can be sent to the location server system on the network 

for location management to provide location information to the third party LBS. However, in 

small number of large scale constructions, signal coverage of BSs may not be well, and 

indoor supplement system of TC-OFDM will be used for signal coverage.  

In order to receive and process the TC-OFDM positioning signal, an accessory named 

WINP (Wide Indoor Navigation and Positioning) have been designed and it can be 

connected with smartphone by using Bluetooth. Then, the initial location information is 

computed based on TDOA (Time Difference of Arrival) when the WINP receives signals 

from three more base stations, which is shown by Fig. 8.  
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Fig. 3. The TDOA used in TC-OFDM system 

 

In our experiment, the accuracy of time synchronization between BTS achieved to 5 ns, 

which a key factor for obtaining a precision positioning result.  

3.2 Salient invariant feature extraction 

Based on the initial location, the regional reference images are fast located in the database, 

which increases the positioning speed. Then, in order to make our algorithm robust to the 

indoor illumination and complex indoor background, we extract salient features including 

Speeded Up Robust Features (SURF) [24], and features from accelerated segment test 

(FAST) corners [25] from the images taken by the smartphone camera and reference 

database. Specially, the features are combined into one feature vector for building a robust 

representation model. 
1) FAST-SURF invariant feature detection 

SURF is a novel scale- and rotation-invariant interest point detector and descriptor [17]. It 

approximates or even outperforms previously proposed schemes with respect to repeatability, 

distinctiveness, and robustness, yet can be computed and compared much faster. This is 

achieved by relying on integral images for image convolutions, and a Hessian matrix-based 

measure is used for the corner detector. Hessian detector is shown as follows: 
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where  is used to obtain the scale-space representation that is a set of images represented at 

different levels of resolutions. Different levels of resolution are in general created by 

convolution with the Gaussian kernel: ( , ) ( )L x G I   . ( )G   is the Gaussian kernel. 

( , )xxL x   is the convolution of the Gaussian second order derivative 

2

2
( )g

x





  with the 

image I  in point x , and similarity for ( , )xyL x   and ( , )yyL x   .  

In order to improve the performance of the proposed algorithm in positioning time, FAST 

corner detector is used to search the salient corner because of its good performance in 

computation time, scale-invariant and accuracy.  The formula of FAST corner detector is 

shown as follows: 

 



728                                  Jiao et al.: A Hybrid of  Smartphone Camera and Basestation Wide-area Indoor Positioning Method 

 

, ( )

, ( )

, ( )

n cp

n cp n cp

n cp

d I I t darker

S s I t I I t similar

l I I t lighter

  


    
  

                                                                (2) 

where 
cpI  is the gray value of the candidate FAST corner,  nI  is the gray value of the 

contiguous pixels in the circle whose center is the candidate FAST corner.   is a threshold 

for measuring the contrast of 
cpI  and nI . d, s and l are used to show the contrast status of a 

pixel in the image. This detector exhibits high performance, but the threshold  is a fixed 

value, and 1t  . Therefore, in order to make the corner detector more robust, this paper 

proposed an approach for calculating the threshold as following: 
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. ( , )i if x y is an image taken 

by the smartphone camera, and ( , )i ir x y  is a reference image from the database.  

In order to generate the FAST-SURF descriptor, the first step consists of constructing a 

square region centered on the FAST point, and oriented along the orientation selected in the 

previous section, which is the same as SURF [23]. Considering finer subdivisions appeared 

to be less robust and would increase matching times too much, in our proposed method, the 

dimensions of FAST-SURF is 64, which characterize the local appearance of an object.  

3.3 Salient invariant feature matching based on improved selected superpixel 
region 

1) Selected region detection 
After extracting FAST-SURF features, a speed-up feature matching approach based on the 

pre-segmentation is proposed. An improved method based on superpixels that is refined 

simple superpixel is introduced for the high-resolution image pre-segmentation, and then the 

matching feature space are selected from the superpixel regions, which reduces the running 

time in searching feature space. 

A superpixel is a patch whose boundary matches the edge of an object. The aim of 

superpixels is to reduce the speed-up problem by replacing pixels with regularly-spaced, 

similarly-sized image patches whose boundaries lie on edges between objects in the image, 

so a pixel-exact object segmentation can be accomplished by classifying superpixel patches 

rather than individual pixels. Fig. 4 shows the pre-segmentation result. 

According to our research, the salient invariant features are mainly in the complex 

superpixels. Therefore, entropy that measures the image complexity is introduced to choose 

the superpixel regions that include salient features. The following formula is used to detect 

the selected superpixel region: 
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where   is the candidate salient region score, iS  is the i th superpixel, ix  is the pixel gray 

value in the  i th  superpixel,    is the mean of superpixel region,   and    are the 

weights, and 1   .  

Then, we detect the salient regions by using a threshold thr . If i thr  , this superpixel 

is the selected region for feature matching. 

 

 
             (a) Superpixel image                                (b) Zoom-in region of Fig. 4(a) 

 
Fig. 4. The pre-segmention image by using superpixels. 

 
 

2) FAST-SURF feature matching 
After detecting the salient superpixel, FAST-SURF feature will be matched. The matching 

is performed by computing the Mahalanobis distance between the FAST-SURF features by 

using the following function: 

 

   FS -FS FS -FS
T

d cam sen cam senM                                                                     (5) 

 

where camFS  and senFS  are the FAST-SURF features extracted from smartphone images 

and database, respectively.  is the FAST-SURF feature covariance matrix. 

3) Vision-based Position and Orientation Determination 
Given a set of correspondences between known 3D reference points and their 2D positions 

in images, camera position and orientation can be determined [25]. Then any object appeared 

in the view can also be estimated in 6 degrees of freedom (DOF). 

The fundamental function model for photogrammetric 6 DOF pose estimation (space 

resection) is called collinearity equations, which represent the geometry between projection 

centers, the world coordinates of an object and its image coordinates. For the object-

centered projection, the image position for the 3D point  , ,X Y Z  in the world 

coordinate frame is given by the projective transformation, 
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where ( , )x y  is the 2D point in the image , 0 0( , )x y  is a 2D point in the  are the camera 

interior parameters f  camera’s focal length. In order to build the relationship between 

( , )x y  and its corresponding 3D point  , ,S S SX Y Z  in the camera coordinate frame, the 

transformation equation between the world coordinate and the camera coordinate is shown as 

follows: 
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where ( , , )i i ia b c  are the elements of the rotation matrix between the image and the object 

coordinate system. Then Eq. 1 and Eq. 2 cab be written as 
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3.4 Location estimation based on an improved MPF 

As mentioned above, TC-OFDM system can provide continuous tracking, and thus, they can 

be used to overcome the fluctuation of RSS-based Wi-Fi positioning. Moreover, one of the 

advantages of TC-OFDM system is that it can provide the altitude information for the users. 

However, in the complex environment where the SNR of TC-OFDM signal is lower than 

135dBm , which makes the positioning accuracy worse. Besides, TC-OFDM system 

cannot support indoor context information. Conversely, the vision-based system can make up 

for assisting in increasing positioning accuracy and supporting the around scene information 

for customers.  Therefore, in this section, an MPF-based fusion algorithm is proposed to fuse 

the TC-OFDM and the vision-based positioning information effectively. We prefer the MPF-

based fusion scheme to the particle filters, due to the high computational complexity of 

particle filters, which need to update and maintain the states of a large number of particles 

whenever a new location is provided. 

Therefore, eight common motion states used during indoor navigation are detected by 

fusing information gained from built-in sensors of the smartphone.  The aim of fusioning 

TC-OFDM and image positioning information can be as trying to estimate the following 

probability density function (PDF), 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016                                731 

 

 ( | )( ( )) ( ) ( ) ( | )
t tt p x Y t t t t iI x E x x p x Y dx                                                             (9) 

 

where ( )tx   is the status function, ( | )t tp X Y   is the distribution which is shown as 

follows: 
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where the status variance at a certain time can be described as follows: 

 

     , | | , |l n l n n

t t t t t t t tp x X Y p x X Y p X Y                                                                (12) 

 

where  | ,l n

t t tp x X Y  could be estimated by Linear Kalman Filter and  |n

t tp X Y   is 

estimated by a general particle filter. 
 

3.5 Map matching 

In order to increase the accuracy, knowledge of the building layout is as important as the 

positioning technology itself. As our system is only designed to provide location and 

navigation in public areas of a building, a simple map matching technique has been 

implemented, which forces the calculated position to stay in those areas. If the position drifts 

outside, it is simply projected back to the closest position in a public area.  

 

 

 
 

Fig. 5. The wide-area outdoor and indoor seamless system for our experiment in BUPT 
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Fig. 6. The equipments of the TC-OFDM positioning base station 

4. Experiment Results 

4.1 Study materials and system configuration 

We conducted experiments at the New Research Building locating in Beijing University of 

Posts and Telecommunications, which is shown by Fig. 5. Four base-stations are equipped 

for covering  
2100000m  area including two buildings. It is noticed that the experimental 

area is 
22000m . The hardware structure of the positioning base station is shown by Fig. 6. 

Furthermore, we obtained 600 omnidirectional panoramic reference images and 1237   

supplemental images for image matching, and the image resolution is 3264 2448pixels . 

It is noticed that all the images are taken by a smartphone camera，and two of them  are 

shown by Fig. 7. Moreover, a static measurement system based on TC-OFDM and Beidou 

Real Time Kinematic (RTK) is introduced. By using this system, the scalable locations with 

positioning accuracy (0.6 ∼ 1 meter) are obtained. The BUPT dataset covers four buildings 

and results in total of 1986 positions. 

 

                        
(a) Reference image                                      (b) Matching image 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016                                733 

 

                         
(c) Reference image                                      (d) Matching image 

Fig. 7 The scenarios of the hall and hallway in BUPT 

 

 

In our experiment, a smartphone running Android OS 4.4 is used to test the positioning 

methods used in this paper. The technical details of this phone are shown in the Table 1. 

 

 
Fig. 8. The positioning terminal, left one is WINP module 

 

 

Table 1. The key technical parameters 

Parameter Value 

CPU Qualcomm Snapdrago 

CPU Processor 4 Core× 2.5GHz 

GPU Adreno 330×578MHz 

OS Android 4.4 

Memory RAM: 3GB, ROM: 2GB 

Camera 13MP 
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Table 2.  The Summary of User-specified parameters 

Name Symbol Value 

Cut off areas - 2m 

Number of fingerprint labels - 389 

The velocity of the object motion  0.75 m/sec 

Sampling period  2.0 sec 

The initial RSSI value at one-meter doP  3.0 dBm 

The breakpoint distance OR  2 m 

Image Resolution p  2048×2048 pixels 

Reference point density - 5 m 

 

In order to evaluate the proposed algorithm, WiFi-based and ibeacon-based positioning 

system are implemented. In this article, we assumed the measurement noise or wall lose is 

the normal random variable with zero mean and variance N(0;   ). There are two patterns 

generated by the DR method, which were used to simulate the path of kinematics model in 

actuality, circular-path. The algorithm starts with the initial condition are shown in Table 2. 

 

4.2 Coarse positioning based on TC-OFDM 

TC-OFDM achieved the positioning information based on the TDOA and the positioning 

result is shown by Fig. 9.  The mean of the positioning results of the TC-OFDM system is 

2.516 m. 

 

 
 

Fig. 9. The corset positioning result based on TC-OFDM 
 

4.3 FAST-SURF feature matching  

1) Feature extraction 
Fig.10 is used to show the result of FAST-SURF feature extraction. In this experiment, 

FAST corners are used to replace the Harris corners in the SURF.  In order to evaluate the 

proposed method, the feature extraction result based on SURF-128 is introduced. The feature 

extraction results gotten by FAST-SURF and SURF-128 are shown by Fig. 10 and Fig. 11.  

Moreover, tested on 100 images, the average runtime of FAST-SURF is 73 ms, which is 20 

ms faster than SURF-128.  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 10, NO. 2, February 2016                                735 

 

     
                                                             (a)  FAST-SURF                               (b) SURF-128 

Fig. 10 The comparison result of featrue extraction based on FAST-SURF and SURF-128 for the 
passage image 

 

   
                                                            (a)  FAST-SURF                                  (b) SURF-128 

Fig. 11. The comparison result of feature extraction based on FAST-SURF and SURF-128 for the 

hall image 

According to the Fig. 10 and Fig. 11, we can find that the proposed approach is more 

robust than SURF-128, which more feature descriptors are extracted by FAST-SURF from 

the low contrast region.  
2) Feature matching 

According to Fig. 12, we can find that SURF-128 gives a large number of matches 

(perhaps because the number of detected interest points is higher), but more matches are also 

wrong. The matching results of FAST-SURF and SURF-128 are shown in Table 3. With a 

percentage of only 78% correct matches, it is clearly the worst of the algorithms. Again, 

FAST-SURF comes out on shared first position with 85% correct matches. However, FAST-

SURF finds fewer matches than the other algorithms.  

The reason behind is that such feature-based methods depend on the choice of 

correspondence on local information and fail to consider global context. When an image has 

repeated patterns, ambiguities will occur when the local information for the similar parts is 

identical. Moreover, FAST corner detector is used to replace the Harris detector, which make 

FAST-SURF robust to the illumination.  

 
Table 3. Total Number of Matches 

Algorithm Total matches Total correct matches Percentage correct Running time 

FAST-SURF 768 653 85% 33.28 

SURF-128 479 383 78% 53.74 
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(a) hallway image matching. 

 

 
(b) hall image matching. 

 
Fig. 12. The feature matching results based on FAST-SURF. 

 
 

4.4 Fine positioning 

We have presented a sensor fusion approach to combine TDOA with image-based 

measurements from a base-station system for 3D location estimation. The approach is 

experimentally shown to result in accurate position and height estimates when compared to 

data from an independent optical reference system. To be able to use the TC-OFDM 

measurements in the sensor fusion approach, the TC-OFDM setup has to be calibrated, i.e. 

the smartphone with the WINP positions have to be computed. We have solved the WINP 

calibration problem using a novel approach, taking into account the possibility of delayed 

TDOA measurements due to NLOS and/or multipath. Furthermore, images taken by 

smartphone are used to compute the precise positions because of solving feature matching 

problem under the complex environment. Throughout this work, we have used a 

marginalized particle filter to model the linear/nonlinear location state. This model is shown 

to lead to accurate position estimation even from challenging data containing a fairly large 

amount of outliers in a new multi-lateration approach. In order to fusion the positioning 

information, Rao-Blackwellization approach is used to compute the model.  

In this paper, two-level fusion strategy is introduced. First of all, the positioning result 

based on TC-OFDM is used to compute the image feature extraction space, which speed up 

the image-based positioning. In the second fusion level, the positioning results from TC-

OFDM and images are fused by using RMPF (Rao-blackwellization Marginalized Particle 

Filter). The positioning results are shown as follows: 
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                                          (a)                                                                       (b) 
 

Fig. 13. The positioning result based on TC-Image. (a) the ground-true pass line (blue) and estimated 
pass line (red); (b) the comparison positioning result of the ground-truth (blue) and estimated based on 

TC-Image (red). 

 
According to Fig. 13(a), we can find that the estimated positioning line practically 

coincides to the ground-truth, which is also be improved by Fig. 13(b). From the Fig. 13(b), 

it is noticed that the positioning result in the horizontal direction is worse than that in the 

vertical direction. It is because the width of the building corridor is 1.5 m, which constrains 

the positioning error by using map matching. Moreover, the mean positioning of TC-Image 

is 0.823 m ( ), which shows that the proposed method has achieved to the indoor sub-meter 

positioning.  

 

4.5 Evaluation 

In this article, in order to check the estimation performance of the proposed method. Two 

approaches are introduced to compare to the TC-Image on the accuracy.  

 
1) Track Estimation Comparison 

First of all, we tested the tree methods at the ninth floor of the New Research Building in 

our university. Three researchers took three positioning terminals to walk along the same 

track at the same time. The positioning results stored in the terminals are shown in Fig. 14. 

Fig. 14 summarizes the performance of the TC-Image comparing to other indoor 

positioning methods, which shows that TC-Image based method obtained the best 

performance among the three approaches. As shown in Fig. 14(a), the user’s locations in the 

room 908 and 910 were precisely estimated. However, as shown in Figs. 14(b) and 14(c), 

some error positioning points are calculated based on WiFi and ibeacon system, which 

shown by yellow and red circle. From those two figures, we can find that the users’ tracks 

passed the wall between two neighboring room, which were caused by signal fluctuations 

because of NLOS and without map matching. 
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Fig. 14. The positioning curve based on (a) TC-Image, (b) WiFi-based and (c) ibeacon. 

 
In order to characterize positioning accuracy, we first manually ground truth the position 

and pose of each query image taken. This is done by using the 3D model representation of 

the mall and distance measurements recorded during the query dataset collection. For each 

query image, we are able to specify a ground truth yaw and position in the same coordinate 

frame as the 3D model and the output of the pose recovery step. Then, the estimated 

locations were compared to the ground truth location, which are shown by Fig. 15.   
2) Comparison of Positioning Results between Estimation and Ground Truth  

According to the Fig. 15(a), we can find that the estimated locations in the horizontal 

direction are almost unanimous to the ground truth. However, at the initial location, the wave 

motions of the three methods are bigger because of the terminal initialization. 

From the Fig. 15(b), we plot the estimated and ground truth locations of the plane 

direction onto the ninth 2D floorplan of the New Research Building. As seen from this figure, 

there is close agreement between the two based on our proposed method, which better than 

WiFi-based and ibeacon-based method.  

As seen in Fig. 12, when the location error is less than 1 meter, the FAST-SURF features of 

corresponding store signs present in both query and database images are matched together by 
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the RANSAC homography [17]. Conversely, in less accurate cases of location estimation 

where the positioning result error exceeds 4 meters, the RANSAC homography finds “false 

matches” between unrelated elements of the query and database images. In the example 

shown by Fig. 14(b), different objects in the corridor of the two images are matched together. 

In general, we find that images with visually unique signs perform better during location 

estimation than those lacking such features. Therefore, the proposed approach of extracting 

features from salient regions achieved to increase the positioning accuracy. 

 
(a) In the horizontal direction 

 
(b) In the vertical direction 

Fig. 15. The positioning result based on TC-Image.  

  
3) Root Mean Square Error 

Root Mean Square Error (RMSE) is introduced to evaluate the proposed algorithm 

performance. The positioning accuracy can be computed as RMSE between the real position 

and their estimated position. It is should be noticed that the WiFi-based approach obtained 

the location based on the fingerprint matching and the ibeacon-based approach obtained the 

location at the 2.4GHz in a circle area with 50 meters radius. 
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The estimation accuracy comparisons are listed in Table 4. As shown in Table 4, if the 

range measurement based on single sensor is unreliable, wireless signal with map matching 

cannot achieve a high accurate estimation. The RMSE of WiFi-based method is 2.317 m by 

using fingerprint matching, which is negative by sharp fluctuations of RSSI. Moreover, the 

RMSE of ibeacon-based method achieved to 3.143 m, which is negative by NLOS and signal 

fading. In contrast, our TC-Image based positioning algorithm is highly robust and can 

achieve a very accurate estimation with RMSE of 0.823 m. The comparison result improves 

that multi-sensors could obtain higher accuracy than single-senor. Furthermore, the image-

based positioning method is robust to the NLOS and signal strength variance. 

Fig. 16 summarizes the performance of the probability distribution of the positioning error. 

As shown in Figs. 16, we are able to localize the position to within sub-meter level of 

accuracy for over 83% of the query images. Furthermore, 99% of the query images are 

successfully localized to within 2 m of the ground truth position. While, the positioning error 

of the WiFi-based and ibeacon-based methods exceed one-meters.  83% of the WiFi-based 

positioning results within 4 m, and 70% of the ibeacon-based positioning results within 4 m. 
 

Table 4. Performance Comparison in Accuracy 

Algorithm RMSE(m) Min Error(m) 
Max 

Error(m) 

Running 

Time(ms) 

Propsoed 

Algorithm 
0.823 0.392 2.764 78.75 

WiFi-based 2.317 1.286 5.819 67.51 

ibeacon-based 3.143 1.074 6.673 89.06 

 

 
Fig. 16. The probability distribution of the positioning error for three methods 

5. Conclusion 

This paper presented a smartphone indoor positioning method. The proposed solution is a 
hybrid solution, fusing multiple smartphone sensors with mobile communication signals and 
images. The smartphone sensors are used to measure the motion dynamics information of the 
mobile user. 
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This paper provides the experimental results of a system utilizing only the sensors available 
on a smartphone to provide an indoor positioning system that does not require any prior 
knowledge of floor plans, transmitter locations, radio signal strength databases, etc. 
Experimental results demonstrated the positioning accuracy is 0.823 m at horizontal and 0.5 
m at vertical. The comparison to WiFi-based and ibeacon-based indoor positioning system 
shows that our approach is robust, while still being efficient. Because the operation of this 
method only uses the built-in hardware and computational resources of a smartphone, the 
positioning solution presented here is more cost-efficient and convenient for integration with 
related applications and services than alternative systems presented previously. 
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