• 제목/요약/키워드: Nano plates

검색결과 151건 처리시간 0.022초

비표면처리 강판을 사용한 iFLASH 시스템의 휨성능 평가 (Flexural Behavior of iFLASH System with No Blast Metal Cleaned Steel Plates)

  • 김용열;류재호;윤성원;주영규
    • 복합신소재구조학회 논문집
    • /
    • 제6권4호
    • /
    • pp.30-37
    • /
    • 2015
  • iFLASH System is new structural floor system which consists of sandwich panels filled with nano-composite. The nano-composite has low specific gravity and high bonding strength with steel plates. The bonding strength is one of important factors for structural performance of iFLASH System and it can further be improved by surface preparation such as blast metal cleaning. However, using none blast steel plates is recommended since surface preparation generates additional fabrication time and cost. In this study, a bonding strength test and bending experiment were conducted to check feasibility of applying none blast steel plates to iFLASH System. Moreover, stress in bonding plane between steel plates and nano-composite was analytically evaluated by finite element method. Consequently, flexural capacity of the specimen was 11% higher than theoretically calibrated value and its flexural behavior was structurally efficient without defect of bonding.

절곡 강판 일체형 고출력 슁글드 태양광 모듈 제조 (Fabrication of High-power Shingled PV Modules Integrated with Bent Steel Plates for the Roof)

  • 이은비;박민준;김민섭;신진호;윤성민
    • Current Photovoltaic Research
    • /
    • 제11권2호
    • /
    • pp.54-57
    • /
    • 2023
  • Recently, requirements for improving the convenience of constructing BIPV (Building Integrated Photo Voltaic) modules had increased. To solve this problem, we fabricated shingled PV modules integrated with bent steel plates for building integrated photovoltaics. These PV modules could be constructed directly on the roof without the installation structure. We found optimal lamination conditions with supporting structures to fabricate a module on a bent steel plate. Moreover, we applied a shingled design to PV modules integrated with bent steel plates to achieve a high electrical output power. The shingled module with bent steel plates shows 142.80 W of solar-to-power conversion in 0.785 m2 area.

사출 성형에 의한 소수성 플라스틱 기판 제작 (Injection Molding of Hydrophobic Plastic Plates)

  • 유영은;이관희;윤재성;최두선;김선경
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1563-1565
    • /
    • 2008
  • Hydrophobic plastic plates employing nano surface features are injection molded using thermoplastic materials. A variotherm molding process is devised for filling the nano pores and releasing the molded nano features from the master. The size of the molded nano surface features are about 100nm in diameter and 200nm in height. The size of the molded plate is about 30mm x 30mm and the thickness is 1mm. As molding materials, Polypropylene, PMMA, COC and PC are employed, which are all typical commodity thermoplastic materials. The mold temperature(stamper temperature) is investigated as a major processing parameter for molding high aspect ratio nano surface features. Almost fully molded nano features are fabricated above a certain level of mold temperature depends on the employing material. The contact angles on the injection molded plates are measured to estimate the hydrophobicity and found to have higher contact angle up to 180% compared to the blank plate with no surface features.

  • PDF

Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium

  • Kolahchi, Reza;Bidgoli, Ali Mohammad Moniri;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • 제55권5호
    • /
    • pp.1001-1014
    • /
    • 2015
  • Bending analysis of functionally graded (FG) nano-plates is investigated in the present work based on a new sinusoidal shear deformation theory. The theory accounts for sinusoidal distribution of transverse shear stress, and satisfies the free transverse shear stress conditions on the top and bottom surfaces of the plate without using shear correction factor. The material properties of nano-plate are assumed to vary according to power law distribution of the volume fraction of the constituents. The size effects are considered based on Eringen's nonlocal theory. Governing equations are derived using energy method and Hamilton's principle. The closed-form solutions of simply supported nano-plates are obtained and the results are compared with those of first-order shear deformation theory and higher-order shear deformation theory. The effects of different parameters such as nano-plate length and thickness, elastic foundation, orientation of foundation orthtotropy direction and nonlocal parameters are shown in dimensionless displacement of system. It can be found that with increasing nonlocal parameter, the dimensionless displacement of nano-plate increases.

A new mindlin FG plate model incorporating microstructure and surface energy effects

  • Mahmoud, F.F.;Shaat, M.
    • Structural Engineering and Mechanics
    • /
    • 제53권1호
    • /
    • pp.105-130
    • /
    • 2015
  • In this paper, the classical continuum mechanics is adopted and modified to be consistent with the unique behavior of micro/nano solids. At first, some kinematical principles are discussed to illustrate the effect of the discrete nature of the microstructure of micro/nano solids. The fundamental equations and relations of the modified couple stress theory are derived to illustrate the microstructural effects on nanostructures. Moreover, the effect of the material surface energy is incorporated into the modified continuum theory. Due to the reduced coordination of the surface atoms a residual stress field, namely surface pretension, is generated in the bulk structure of the continuum. The essential kinematical and kinetically relations of nano-continuums are derived and discussed. These essential relations are used to derive a size-dependent model for Mindlin functionally graded (FG) nano-plates. An analytical solution is derived to show the feasibility of the proposed size-dependent model. A parametric study is provided to express the effect of surface parameters and the effect of the microstructure couple stress on the bending behavior of a simply supported FG nano plate.

비국소 탄성 이론을 이용한 나노 판의 휨 및 자유진동해석 (Nonlocal elasticity theory for bending and free vibration analysis of nano plates)

  • 이원홍;한성천;박원태
    • 한국산학기술학회논문지
    • /
    • 제13권7호
    • /
    • pp.3207-3215
    • /
    • 2012
  • 본 논문에서는 3차 전단변형이론이 고려된 비국소 탄성 이론을 이용한 나노 판의 휨 및 진동에 대하여 연구하였다. 비국소 탄성 이론은 미소 규모 효과를 고려할 수 있고 3차원 전단변형이론은 나노 판의 두께방향으로의 전단 변형률과 전단응력의 곡선변화 효과를 고려할 수 있다. 이러한 두 가지 이론을 이용하여 나노 판의 처짐과 고유진동수에 미치는 비국소 이론의 효과를 제시하였다. 국소 탄성이론과의 관계를 수치해석 결과를 통하여 고찰하였다. 또한 (i) 비국소 계수, (ii) 나노 판의 적층형태, (iii) 나노 판의 보강 방향 그리고 (iv) 나노 판의 적층 수 등이 나노 판의 무차원 처짐에 미치는 효과에 대하여 관찰하였다. 본 연구의 결과를 검증하기 위해 참고문헌의 결과들과 비교 분석하였으며 해석결과는 참고문헌의 결과들과 잘 일치함을 알 수 있었다. 비국소 이론에 의한 나노 판의 처짐에 관한 연구는 향후 관련연구에 비교자료로 활용될 수 있을 것이다.

Numerical investigation on scale-dependent vibrations of porous foam plates under dynamic loads

  • Fenjan, Raad M.;Ahmed, Ridha A.;Faleh, Nadhim M.;Fatima, Fatima Masood
    • Structural Monitoring and Maintenance
    • /
    • 제7권2호
    • /
    • pp.85-107
    • /
    • 2020
  • Dynamic responses of porous piezoelectric and metal foam nano-size plates have been examined via a four variables plate formulation. Diverse pore dispersions named uniform, symmetric and asymmetric have been selected. The piezoelectric nano-size plate is subjected to an external electrical voltage. Nonlocal strain gradient theory (NSGT) which includes two scale factors has been utilized to provide size-dependent model of foam nanoplate. The presented plate formulation verifies the shear deformations impacts and it gives fewer number of field components compared to first-order plate model. Hamilton's principle has been utilized for deriving the governing equations. Achieved results by differential quadrature (DQ) method have been verified with those reported in previous studies. The influences of nonlocal factor, strain gradients, electrical voltage, dynamical load frequency and pore type on forced responses of metal and piezoelectric foam nano-size plates have been researched.

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation

  • Yazdi, Ali A.
    • Structural Engineering and Mechanics
    • /
    • 제68권2호
    • /
    • pp.203-213
    • /
    • 2018
  • This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.

$Al_2O_3$/SiC Hybrid-Composite의 제조 (Fabrication of $Al_2O_3$/SiC Hybrid-Composite)

  • 이수영;임경호;전병세
    • 연구논문집
    • /
    • 통권26호
    • /
    • pp.103-112
    • /
    • 1996
  • $Al_2O_3/SiC$ Hybrid-Composite이 일반적인 분말공정에 의하여 제조되었다. 소결시 $\gamma-Al_2O_3에서 $\alpha-Al_2O_3$로의 전이에 seed역할을 하는 $\alpha-Al_2O_3의 첨가는 균일한 미세구조를 발달시켜 강도의 증진을 가져왔다. nano size의 SiC의 첨가는 $Al_2O_3$의 소결성과 입성장에 영향을 미쳐 파괴강도의 증진을 가져왔다. $Al_2O_3/SiC$ nano-Composite에 SiC plates의 첨가는 파괴강도의 감소를 가져왔지만, 상대적으로 파괴인성은 증진되었다. SiC plates에 nitride (BN, $Si_3N_4$ 코팅을 할 경우 crack deflection을 더욱 유발하여 파괴인성이 증진되었다.

  • PDF

On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model

  • Belkorissat, Ismahene;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.1063-1081
    • /
    • 2015
  • In this paper, a new nonlocal hyperbolic refined plate model is presented for free vibration properties of functionally graded (FG) plates. This nonlocal nano-plate model incorporates the length scale parameter which can capture the small scale effect. The displacement field of the present theory is chosen based on a hyperbolic variation in the in-plane displacements through the thickness of the nano-plate. By dividing the transverse displacement into the bending and shear parts, the number of unknowns and equations of motion of the present theory is reduced, significantly facilitating structural analysis. The material properties are assumed to vary only in the thickness direction and the effective properties for the FG nano-plate are computed using Mori-Tanaka homogenization scheme. The governing equations of motion are derived based on the nonlocal differential constitutive relations of Eringen in conjunction with the refined four variable plate theory via Hamilton's principle. Analytical solution for the simply supported FG nano-plates is obtained to verify the theory by comparing its results with other available solutions in the open literature. The effects of nonlocal parameter, the plate thickness, the plate aspect ratio, and various material compositions on the dynamic response of the FG nano-plate are discussed.