Browse > Article
http://dx.doi.org/10.12989/sem.2018.68.2.203

Large amplitude forced vibration of functionally graded nano-composite plate with piezoelectric layers resting on nonlinear elastic foundation  

Yazdi, Ali A. (Department of Mechanical Engineering, Quchan University of Technology)
Publication Information
Structural Engineering and Mechanics / v.68, no.2, 2018 , pp. 203-213 More about this Journal
Abstract
This paper presents a study of geometric nonlinear forced vibration of carbon nano-tubes (CNTs) reinforcement composite plates on nonlinear elastic foundations. The plate is bonded with piezoelectric layers. The von Karman geometric nonlinearity assumptions with classical plate theory are employed to obtain the governing equations. The Galerkin and homotopy perturbation method (HPM) are utilized to investigate the effect of carbon nano-tubes volume fractions, large amplitude vibrations, elastic foundation parameters, piezoelectric applied voltage on frequency ratio and primary resonance. The results indicate that the carbon nano-tube volume fraction, applied voltage and elastic foundation parameters have significant effect on the hardening response of carbon nanotubes reinforced composite (CNTRC) plates.
Keywords
nonlinear forced vibration; carbon nano-tube; elastic foundation; Homotopy Perturbation method;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Wang, M., Li, Z.M. and Qiao, P. (2016), "Semi-analytical solutions to buckling and free vibration analysis of carbon nanotube-reinforced composite thin plates", Compos. Struct., 144, 33-43.   DOI
2 Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nano-tube-reinforced composite face sheets", Compos. Part B: Eng., 43(2), 411-421.   DOI
3 Wang, Z.X. and Shen, H.S. (2011), "Nonlinear vibration of nanotube-reinforced composite plates in thermal environments", Comput. Mater. Sci., 50, 2319-2330.   DOI
4 Zhang, L.W., Lei, Z.X., Liew, K.M. and Yu, J.L. (2014), "Large deflection geometrically nonlinear analysis of carbon nanotube-reinforced functionally graded cylindrical panels", Comput. Meth. Appl. Eng., 273, 1-18.   DOI
5 Zhang, L.W., Song, Z.G., Qiao, P. and Liew, K.M. (2017), "Modeling of dynamic response of CNT-reinforced composite cylindrical shells under impact loads", Comput. Meth. Appl. Mech. Eng., 313, 889-903.   DOI
6 Ansari, R. and Gholami, R. (2016), "Nonlinear primary resonance of third-order deformable functionally graded nanocomposite rectangular plates reinforced by carbon nanotubes", Compos. Struct., 154, 707-723.   DOI
7 Ansari, R., Faghih Shojaei, M., Mihammadi, V., Gholami, R. and Sadeghi, F. (2014), "Nonlinear forced vibration analysis of functionally graded carbon nanotube-reinforced composite Timoshenko beams", Compos. Struct., 113, 316-327.   DOI
8 Benedict, T. and Roy, T. (2016), "Vibration analysis of functionally graded carbon nano-tube-reinforced composite shell structures", Acta Mech., 227(2), 581-599.   DOI
9 Ansari, R., Hasrati, E., Faghih Shojaei, M., Gholami, R. and Shahbodini, A. (2015), "Forced vibration analysis of functionally graded carbon nanotube-reinforced composite plates using a numerical strategy", Phys. E: Low-Dimens. Syst. Nanostruct., 69, 294-305.   DOI
10 Ansari, R., Pourashraf, T., Gholami, R. and Shahbodini, A. (2016), "Analytical solution for nonlinear post buckling of functionally graded carbon nanotube-reinforced composite shells with piezoelectric layers", Compos. Part B: Eng., 90, 267-277.   DOI
11 Fazelzadeh, S.A., Pouresmaeeli, S. and Ghavanloo, E. (2015), "Aeroelastic characteristic of functionally graded carbon nanotube- reinforced composite plates under a supersonic flow", Comput. Meth. Appl. Mech. Eng., 285, 714-729.   DOI
12 Gholami, R. and Ansari, R. (2017), "Large deflection geometrically nonlinear analysis of functionally graded multilayer graphene platelet-reinforced polymer composite rectangular plates", Compos. Struct., 180, 760-771.   DOI
13 Gholami, R. and Ansari, R. (2018) "Nonlinear harmonically excited vibration of third-order shear deformable functionally graded graphene platelet-reinforced composite rectangular plates", Eng. Struct., 156, 197-209.   DOI
14 Gholami, R., Ansari, R. and Gholami, Y. (2017) "Nonlinear resonant dynamics of geometrically imperfect higher-order shear deformable functionally graded carbon-nanotube reinforced composite beams", Compos. Struct., 174, 45-58.   DOI
15 Gorbanpour Arani, A. and Haghparast, E. (2017), "Vibration analysis of axially moving carbon nanotube reinforced composite plate under initial tension", Polym. Compos., 38(4), 814-822.   DOI
16 Iijima, S.J. (1991), "Helical microtubules of graphitic carbon", Nat., 354, 56-58.   DOI
17 Gorbanpour Arani, A., Haghparast, E. and Babakbar Zaeri, H. (2017), "Vibration analysis of functionally graded nanocomposite plate moving in two directions", Steel Compos. Struct., 23(5), 529-541.   DOI
18 Gorbanpour Arani, A., Haghparast, E. and Babakbar, Z. (2016), "Vibration of axially moving 3-phase CNTFPC plate resting on orthotropic foundation", Struct. Eng. Mech., 57(1), 105-126.   DOI
19 Guo, X.Y. and Zhang, W. (2016), "Nonlinear vibrations of a reinforced composite plate with carbon nano-tubes", Compos. Struct., 135, 96-108.   DOI
20 He, J.H. (1999), "Homotopy perturbation technique", Comput. Meth. Appl. Mech. Eng., 178, 257-262.   DOI
21 Ke, L.L., Yang, J. and Kitipornchai, S. (2010), "Nonlinear free vibration of functionally graded carbon nano-tube-reinforced composite beams", Compos. Struct., 92, 676-683.   DOI
22 Kiani, Y. (2016), "Free vibration of FG-CNT reinforced composite skew plates", Aerosp. Sci. Technol., 58, 178-188.   DOI
23 Kiani, Y. (2017), "Free vibration of FG-CNT reinforced composite spherical shell panels using Gram-Schmidt shape functions", Compos. Struct., 159, 368-381.   DOI
24 Kiani, Y. (2016), "Free vibration of functionally graded carbon nanotube reinforced composite plates integrated with piezoelectric layers", Comput. Math. Appl., 72(9), 2433-2449.   DOI
25 Memar Ardestani, M., Zhang, L.W. and Liew, K.M. (2017), "Isogeometric analysis of the effect of CNT orientation on the static and vibration behaviors of CNT-reinforced skew composite plates", Comput. Meth. Appl. Mech. Eng., 317, 341-379.   DOI
26 Ribeiro, P. (2016), "Non-local effects on the non-linear modes of vibration of carbon nano-tubes under electrostatic actuation", Int. J. Non-Lin. Mech., 87, 1-20.   DOI
27 Mirzaei, M. and Kiani, Y. (2016), "Fee vibration of functionally graded carbon nanotube reinforced composite cylindrical panels, Compos. Struct., 142, 45-56.   DOI
28 Mirzaei, M. and Kiani, Y. (2016), "Free vibration of functionally graded carbon-nano-tube-reinforced composite plates with cutout", Beilst. J. Nanotechnol., 7(1), 511-523.   DOI
29 Rafiee, M., He, X.Q. and Liew, K.M. "Non-linear analysis of piezoelectric nanocomposite energy harvesting plates", Smart Mater. Struct., 23, 065001.   DOI
30 Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy's higher-order shear deformation theory", Compos. Struct., 163, 350-364.   DOI
31 Selim, B.A., Zhang, L.W. and Liew, K.M. (2017), "Impact analysis of CNT-reinforced composite plates based on Reddy's higher-order shear deformation theory using an element-free approach", Compos. Struct., 170, 228-242.   DOI
32 Shams, S. and Soltani, B. (2016), "Buckling of laminated carbon nano-tube-reinforced composite plates on elastic foundations using a mesh free method", Arab. J. Sci. Eng., 41(5), 1981-1993.   DOI
33 Shen, H.S. (2012), "Thermal buckling and post buckling behavior of functionally graded carbon nano-tube-reinforced composite cylindrical shells", Compos. Part B: Eng., 43(3), 1030-1038.   DOI
34 Singh, G., Raju, K.K. and Rao, G.V. (1990), "Non-linear vibrations of simply supported rectangular cross-ply plates", J. Sound Vibr., 142, 213-226.   DOI