• Title/Summary/Keyword: Nano ceramics

Search Result 174, Processing Time 0.023 seconds

Fabrication of porous titanium oxide-manganese oxide ceramics with enhanced anti-static and mechanical properties (우수한 대전방지 및 기계적 성질을 가지는 다공성 산화티탄-산화망간 세라믹스 제조)

  • Yu, Dongsu;Hwang, Kwang-Taek;Kim, Jong-Young;Jung, Jong-Yeol;Baik, Seung-Woo;Shim, Wooyoung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.6
    • /
    • pp.263-270
    • /
    • 2018
  • Recently, porous ceramic materials with anti-static performance are urgently needed for semiconductor and OLED/LCD display manufacturing industry. In this work, we fabricated porous titanium manganese oxide ceramics having the surface resistivity of $10^8-10^{10}$ ohm and enhanced mechanical strength by partial sintering method using nanosized titanium oxide. By addition of nano-sized titanium oxide in the matrix, neck formation between grains was strengthened, which remarkably increased flexural strength up to 170 MPa (@porosity: 15 %), 110 MPa (@porosity: 31 %), compared to 80 MPa (@porosity: 26 %) for pristine titanium manganese oxide ceramics. We evaluated the performances of our ceramics as air-floating module for OLED flexible display manufacturing devices.

Effect of Film Thickness on the Photocatalytic Performance of TiO2 Film Fabricated by Room Temperature Powder Spray in Vacuum Process (상온 진공 분말 분사공정에 의해 제조된 TiO2 광촉매 막의 두께변화에 따른 광촉매 특성)

  • Kim, Kun-Young;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin;Yoon, Woon-Ha;Lee, Byoung-Kuk;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.839-844
    • /
    • 2008
  • $TiO_2$ is an environment-friendly semiconducting material, and it has photocatalytic and hydrophilic effect. There are a lot of reports on the photocatalytic characteristics of $TiO_2$, such as organic pollutants resolving, anti-bacterial, and self-purification material. In this paper, $TiO_2$ micron-sized powders were deposited on the glass by room temperature powder spray in vacuum process, so called aerosol deposition (AD), and nano-grained $TiO_2$ photocatalytic thin films were fabricated. The thickness of the films were controlled by changing the number of deposition cycle. Morphologies and characteristics of the AD-$TiO_2$ thin films were examined by SEM, TEM, XRD, and UV-Visible Spectrophotometer. As the thickness of $TiO_2$ films increased, surface roughness increased. By this increment, the reaction area between film and pollutant was enlarged, resulting in better photocatalytic property.

NANO-SIZED COMPOSITE MATERIALS WITH HIGH PERFORMANCE

  • Niihara, N.;Choa, H.Y.;Sekino, T.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1996.11a
    • /
    • pp.6-6
    • /
    • 1996
  • Ceramic based nanocomposite, in which nano-sized ceramics and metals were dispersed within matrix grains and/or at grain boundaries, were successfully fabricated in the ceramic/cerarnic and ceramic/metal composite systems such as $Al_2O_3$/SiC, $Al_2O_3$/$Si_3N_4$, MgO/SiC, mullite/SiC, $Si_3N_4/SiC, $Si_3N_4$/B, $Al_2O_3$/W, $Al_2O_3$/Mo, $Al_2O_3$/Ni and $ZrO_2$/Mo systems. In these systems, the ceramiclceramic composites were fabricated from homogeneously mixed powders, powders with thin coatings of the second phases and amorphous precursor composite powders by usual powder metallurgical methods. The ceramiclmetal nanocomposites were prepared by combination of H2 reduction of metal oxides in the early stage of sinterings and usual powder metallurgical processes. The transmission electron microscopic observation for the $Al_2O_3$/SiC nanocomposite indicated that the second phases less than 70nm were mainly located within matrix grains and the larger particles were dispersed at the grain boundaries. The similar observation was also identified for other cerarnic/ceramic and ceramiclmetal nanocornposites. The striking findings in these nanocomposites were that mechanical properties were significantly improved by the nano-sized dispersion from 5 to 10 vol% even at high temperatures. For example, the improvement in hcture strength by 2 to 5 times and in creep resistance by 2 to 4 orders was observed not only for the ceramidceramic nanocomposites but also for the ceramiclmetal nanocomposites with only 5~01%se cond phase. The newly developed silicon nitride/boron nitride nanocomposites, in which nano-sized hexagonal BN particulates with low Young's modulus and fracture strength were dispersed mainly within matrix grains, gave also the strong improvement in fracture strength and thermal shock fracture resistance. In presentation, the process-rnicro/nanostructure-properties relationship will be presented in detail. The special emphasis will be placed on the understanding of the roles of nano-sized dispersions on mechanical properties.

  • PDF

Improvement of Energy Storage Characteristics of (Ba0.7Ca0.3)TiO3 Thick Films by the Increase of Electric Breakdown Strength from Nano-Sized Grains (절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가)

  • Lee, Ju-Seung;Yoon, Songhyeon;Lim, Ji-Ho;Park, Chun-Kil;Ryu, Jungho;Jeong, Dae-Yong
    • Korean Journal of Materials Research
    • /
    • v.29 no.2
    • /
    • pp.73-78
    • /
    • 2019
  • Lead free $(Ba_{0.7}Ca_{0.3})TiO_3$ thick films with nano-sized grains are prepared using an aerosol deposition (AD) method at room temperature. The crystallinity of the AD thick films is enhanced by a post annealing process. Contrary to the sharp phase transition of bulk ceramics that has been reported, AD films show broad phase transition behaviors due to the nano-sized grains. The polarization-electric hysteresis loop of annealed AD film shows ferroelectric behaviors. With an increase in annealing temperature, the saturation polarization increases because of an increase in crystallinity. However, the remnant polarization and cohesive field are not affected by the annealing temperature. BCT AD thick films annealed at $700^{\circ}C/2h$ have an energy density of $1.84J/cm^3$ and a charge-discharge efficiency of 69.9 %, which is much higher than those of bulk ceramic with the same composition. The higher energy storage properties are likely due to the increase in the breakdown field from a large number of grain boundaries of nano-sized grains.

Sintering Behavior and Thermal Conductivity of Aluminum Nitride Ceramics with MgO-CaO-Al2O3-SiO2 Nano-glass Additive (나노 MgO-CaO-Al2O3-SiO2 glass 첨가제를 가진 AlN의 소결거동 및 열전도도)

  • Baik, Su-Hyun;Kim, Kyung Min;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.5
    • /
    • pp.426-434
    • /
    • 2018
  • In this study, $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) nanocomposite glass powder having a mean particle size of 50 nm and a specific surface area of $40m^2/g$ is used as a sintering additive for AlN ceramics. Densification behaviors and thermal properties of AlN with 5 wt% MCAS nano-glass additive are investigated. Dilatometric analysis and isothermal sintering of AlN-5wt% MCAS compact demonstrates that the shrinkage of the AlN specimen increases significantly above $1,300^{\circ}C$ via liquid phase sintering of MCAS additive, and complete densification could be achieved after sintering at $1,600^{\circ}C$, which is a reduction in sintering temperature by $200^{\circ}C$ compared to conventional $AlN-Y_2O_3$ systems. The MCAS glass phase is satisfactorily distributed between AlN particles after sintering at $1,600^{\circ}C$, existing as an amorphous secondary phase. The AlN specimen attained a thermal conductivity of $82.6W/m{\cdot}K$ at $1,600^{\circ}C$.

Comparative Study of Properties of Dental Zirconia According to Microwave Sintering Method (마이크로웨이브 소결방법에 따른 치과용 지르코니아의 물리적 특성)

  • Kim, Tae-Suk;Yu, Chin-Ho;Kim, Gi-Chul;Park, Won-Uk;Seo, Jung-Il;Hwang, Kyu-Hong
    • Journal of Technologic Dentistry
    • /
    • v.34 no.1
    • /
    • pp.11-21
    • /
    • 2012
  • Purpose: Densification and mechanical properties of dental zirconia ceramics were evaluated by different sintering methods. Materials and Methods: Y-TZP zirconia block(Kavo $Everest^{(R)}$ ZS blank, Kavo dental GmbH, Bismarckring, Germany) was used in this study. Sintering were performed in heat sintering furnace and microwave sintering furnace, and then experimented and analyzed on a change in densification according to the sintering time, a change in densification according to thickness, flexural strength and micro-structure in zirconia specimens. Results: Microwave sintering was very effective in considerable mechanical properties such as flexural strength and bulk density was drastically increased than conventional electric heating method. It is also shown that microwave sintering time was faster and more economical than common method to be present in qualities which equal or exceed. Conclusion: It will be important to seek the accurate sintering condition of dental zirconia by microwave sintering method and the continuous research is necessary for the study of relationship between sintering methods and mechanical properties.

Low Temperature Synthesis of the Microwave Dielectric (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 Nano Powders by the Metal-citrate Process (Metal-citrate Process를 이용한 마이크로파 유전체용 (Pb0.5Ca0.5)(Fe0.5Nb0.5)O3 나노 분말의 저온 합성)

  • Lee, Dong-Wook;Won, Jong-Han;Shim, Kwang-Bo;Kang, Seung-Gu;Hyun, Boo-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1113-1118
    • /
    • 2002
  • Nano sized $(Pb_{0.5}Ca_{0.5})(Fe_{0.5}Nb_{0.5})O_3$ (PCFN) powders with the stoichiometric composition and the uniform size distribution were successfully synthesized by the metal-citrate process through the calcination of the polymeric precursor which consisted of the metal ions and the organic network. The crystallization of the initial amorphous powders began at $400{\circ}$ and completed at $700{\circ}$. The pyrochlore phase was detected caused by the dissociation of PbO above $900{\circ}$. Single phase perovskite PCFN powders with 40 nm size and uniform shape were obtained through the calcination at $700{\circ}$.

Study of LST Surface Modification effect on friction and wear at lubricating condition

  • Tripathi, Khagendra;Joshi, Bhupendra;Gyawali, Gobinda;Kim, Seung-Ho;Lee, Soo Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2014.11a
    • /
    • pp.182-183
    • /
    • 2014
  • Hemispherical dimples with diameter, ø=$60{\mu}m$ and depth, d= $30{\mu}m$ were created on the metal and ceramics surfaces using INYA 10 watt Laser of 1064 nm wavelength. This study reports the influence of dimple pitch on friction and wear behavior rather than dimple size, depth and density. LST was performed on the specimens with dimple pitch and density in the range of 80 to-$200{\mu}m$ and 44 to 7 %, respectively. Surface topography was analyzed by using roughness measurement, scanning electron microscopy (SEM), and optical microscopy. Friction and wear characteristics were analyzed on textured surfaces at lubricating environment to observe the effect of surface texturing on reduction of friction and wear. Reduction on coefficient of friction was achieved by more than 70% due to the dual behavior of dimples as wear (debris) traps and lubricant reservoirs. Wear reduced significantly for the textured surface as compared to the polished surface. Moreover, the friction coefficient of the textured specimens reduced with increasing load and speed which may be attributed to the transition of lubrication regime.

  • PDF

Synthesis and Characterization of CoAl2O4 Inorganic Pigment Nanoparticles by a Reverse Micelle Processing (역-마이셀 공정에 의한 CoAl2O4 무기안료 나노 분말의 합성 및 특성)

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.370-374
    • /
    • 2014
  • Inorganic pigments have high thermal stability and chemical resistance at high temperature. For these reasons, they are used in clay, paints, plastic, polymers, colored glass and ceramics. $CoAl_2O_4$ nano-powder was synthesized by reverse-micelle processing the mixed precursor(consisting of $Co(NO_3)_2$ and $Al(NO_3)_3$). The $CoAl_2O_4$ was prepared by mixing an aqueous solution at a Co:Al molar ratio of 1:2. The average particle size, and the particle-size distribution, of the powders synthesized by heat treatment (at 900; 1,000; 1,100; and $1,200^{\circ}C$ for 2h) were in the range of 10-20 nm and narrow, respectively. The average size of the synthesized nano-particles increased with increasing water-to-surfactant molar ratio. The synthesized $CoAl_2O_4$ powders were characterized by X-ray diffraction analysis(XRD), field-emission scanning electron microscopy(FE-SEM) and color spectrophotometry. The intensity of X-ray diffraction of the synthesized $CoAl_2O_4$ powder, increased with increasing heating temperature. As the heating temperature increased, crystal-size of the synthesized powder particles increased. As the R-value(water/surfactant) and heating temperature increased, the color of the inorganic pigments changed from dark blue-green to cerulean blue.

Evaluation of Mechanical Properties of Glass Substrate Strengthened by Ulatrashort Laser Pulse(1) (극초단파 레이저 강화 유리 기판의 기계적 특성평가(1))

  • Moon Pil Yong;Yoon Duk ki;Lee Kang Taek;Yoo Byung Heon;Cho Sung Hak;Ryu Bong Ki
    • Korean Journal of Materials Research
    • /
    • v.15 no.12
    • /
    • pp.796-801
    • /
    • 2005
  • In order to reduce the weight of glass in architecture, automobile, bottles, displays, a new technique that can strengthen glass was developed using various method. Generally, the strength achieved of glass-ceramics is higher as is 1.he fracture toughness by the formation of a crystalline phase inside glass. In this study, $70SiO_2-20Na_2O-10CaO-10TiO_2$ glasses were irradiated to strengthen by heterogeneous phase using femto-second laser pulse. Laser pulse irradiation of samples was analyzed by DTA, TMA, XRD, nano-indenter and SEM. Samples irradiated by laser had lower value$(3\~4\times10^{-3}Pa)$ of nano indentation which related with mother glass$(8\times10-3Pa)$ than values. Microcracks were occurred around laser irradiation area when femtosecond laser with the repetition rate of 1kHz was used as the light source to induced heterogeneous phase.