• 제목/요약/키워드: Nano beams

Search Result 130, Processing Time 0.027 seconds

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

Fabrication of a Polymeric Planar Nano-diffraction Grating with Nonuniform Pitch for an Integrated Spectrometer Module (집적화된 분광모듈 구현을 위한 고분자 기반의 비등간격 평면나노회절격자 제작)

  • Kim, Hwan-Gi;Oh, Seung-Hun;Choi, Hyun-Yong;Park, Jun-Heon;Lee, Hyun-Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.2
    • /
    • pp.53-58
    • /
    • 2017
  • This paper presents the design and fabrication of a planar nano-diffraction grating for an integrated miniature spectrometer module. The proposed planar nano-diffraction grating consists of nonuniform periods, to focus the reflected beams from the grating's surface, and an asymmetrical V-shaped groove profile, to provide uniform diffraction efficiency in the wavelength range from 400 to 650 nm. Also, to fabricate the nano-diffraction grating using low-cost UV-NIL technology, we analyzed the FT-IR spectrum of a uvcurable resin and optimized the conditions for the UV curing process. Then, we precisely fabricated the polymeric nano-diffraction grating within 5 nm in dimensional accuracy. The integrated spectrometer module using the fabricated polymeric planar nano-diffraction grating provides spectral resolution of 5 nm and spectral bandwidth of 250 nm. Our integrated spectrometer module using a polymeric planar nano-diffraction grating serves as a quick and easy solution for many spectrometric applications.

Mathematical modeling of concrete beams containing GO nanoparticles for vibration analysis and measuring their compressive strength using an experimental method

  • Kasiri, Reza;Massah, Saeed Reza
    • Advances in nano research
    • /
    • v.12 no.1
    • /
    • pp.73-79
    • /
    • 2022
  • Due to the extensive use of concrete structures in various applications, the improvement of their strength and quality has become of great importance. A new way of achieving this purpose is to add different types of nanoparticles to concrete admixtures. In this work, a mathematical model has been employed to analyze the vibration of concrete beams reinforced by graphene oxide (GO) nanoparticles. To verify the accuracy of the presented model, an experimental study has been conducted to compare the compressive strengths of these beams. Since GO nanoparticles are not readily dissolved in water, before producing the concrete samples, the GO nanoparticles are dispersed in the mixture by using a shaker, magnetic striker, ultrasonic devices, and finally, by means of a mechanical mixer. The sinusoidal shear deformation beam theory (SSDBT) is employed to model the concrete beams. The Mori-Tanaka model is used to determine the effective properties of the structure, including the agglomeration influences. The motion equations are calculated by applying the energy method and Hamilton's principle. The vibration frequencies of the concrete beam samples are obtained by an analytical method. Three samples containing 0.02% GO nanoparticles are made and their compressive strengths are measured and compared. There is a good agreement between our results and those of the mathematical model and other papers, with a maximum difference of 1.29% between them. The aim of this work is to investigate the effects of nanoparticle volume fraction and agglomeration and the influences of beam length and thickness on the vibration frequency of concrete structures. The results show that by adding the GO nanoparticles, the vibration frequency of the beams is increased.

A Study on Design and Analysis for Magnetic Lenses of a Scanning Electron Microscope using Finite Element Method (유한요소법을 사용한 주사전자 현미경의 전자렌즈 설계 및 해석에 관한 연구)

  • Park, Keun;Jung, Hyun-Woo;Park, Man-Jin;Kim, Dong-Hwan;Jang, Dong-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.9
    • /
    • pp.95-102
    • /
    • 2007
  • The scanning electron microscope (SEM) is one of the most popular instruments available for the measurement and analysis of the micro/nano structures. It is equipped with an electron optical system that consists of an electron beam source, magnetic lenses, apertures, deflection coils, and a detector. The magnetic lenses playa role in refracting electron beams to obtain a focused spot using the magnetic field driven by an electric current from a coil. A SEM column usually contains two condenser lenses and an objective lens. The condenser lenses generate a magnetic field that forces the electron beams to form crossovers at desired locations. The objective lens then focuses the electron beams on the specimen. The present work concerns finite element analysis for the electron magnetic lenses so as to analyze their magnetic characteristics. To improve the performance of the magnetic lenses, the effect of the excitation current and pole-piece design on the amount of resulting magnetic fields and their peak locations are analyzed through the finite element analysis.

Static stability and vibration response of rotating carbon-nanotube-reinforced composite beams in thermal environment

  • Ozge Ozdemir;Huseyin Ural;Alexandre de Macedo Wahrhaftig
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.445-458
    • /
    • 2024
  • The objective of this paper is to present free vibration and static stability analyses of rotating composite beams reinforced with carbon nanotubes (CNTs) under uniform thermal loads. Beam structural equations and CNT-reinforced composite (CNTRC) beam formulations are derived based on Timoshenko beam theory (TBT). The temperature-dependent properties of the beam material, such as the elastic modulus, shear modulus, and material density, are assumed to vary over the thickness according to the rule of mixture. The beam material is modeled as a mixture of single-walled carbon nanotubes (SWCNTs) in an isotropic matrix. The SWCNTs are aligned and distributed in the isotropic matrix with different patterns of reinforcement, namely the UD (uniform), FG-O, FG-V, FG- Λ and FG-X distributions, where FG-V and FG- Λ are asymmetric patterns. Numerical examples are presented to illustrate the effects of several essential parameters, including the rotational speed, hub radius, effective material properties, slenderness ratio, boundary conditions, thermal force, and moments due to temperature variation. To the best of the authors' knowledge, this study represents the first attempt at the finite element modeling of rotating CNTRC Timoshenko beams under a thermal environment. The results are presented in tables and figures for both symmetric and asymmetric distribution patterns, and can be used as benchmarks for further validation.

Development of the educational management model for dynamic instability analysis in nanocomposite sandwich beam

  • Wenxi Tang;Chunhui Zhou;Maryam Shokravi;X. Kelaxich
    • Advances in nano research
    • /
    • v.17 no.1
    • /
    • pp.9-18
    • /
    • 2024
  • This paper presents the development of an educational management model for analyzing the dynamic instability of nanocomposite sandwich beams. The model aims to provide a comprehensive framework for understanding the behavior of sandwich micro beams with foam cores, featuring top and bottom layers made of smart and porous functionally graded materials (FGM) nanocomposites. The bottom layer is influenced by an external electric field, and the entire beam is supported by a visco-Pasternak foundation, accounting for spring, shear, and damping constants. Using the Kelvin-Voigt theory to model structural damping and incorporating size effects based on strain gradient theory, the model employs the parabolic shear deformation beam theory (PSDBT) to derive motion equations through Hamilton's principle. The differential quadrature method (DQM) is applied to solve these equations, accurately identifying the improvement in student understanding (ISU) of the beams. The impact of various parameters, including FGM properties, external voltage, geometric constants, and structural damping, on the DIR is thoroughly examined. The educational model is validated by comparing its outcomes with existing studies, highlighting the increase in ISU with the application of negative external voltage to the smart layer. This model serves as a valuable educational tool for engineering students and researchers studying the dynamic stability of advanced nanocomposite structures.

Analytical investigation of the surface effects on nonlocal vibration behavior of nanosize curved beams

  • Ebrahimi, Farzad;Daman, Mohsen
    • Advances in nano research
    • /
    • v.5 no.1
    • /
    • pp.35-47
    • /
    • 2017
  • This paper deals with free vibration analysis of nanosize rings and arches with consideration of surface effects. The Gurtin-Murdach model is employed for incorporating the surface effect parameters including surface density, while the small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. An analytical Navier solution is presented to solve the governing equations of motions. Comparison between results of the present work and those available in the literature shows the accuracy of this method. It is explicitly shown that the vibration characteristics of the curved nanosize beams are significantly influenced by the surface density effects. Moreover, it is shown that by increasing the nonlocal parameter, the influence of surface density reduce to zero, and the natural frequency reaches its classical value. Numerical results are presented to serve as benchmarks for future analyses of nanosize rings and arches.

Flexoelectric effects on dynamic response characteristics of nonlocal piezoelectric material beam

  • Kunbar, Laith A. Hassan;Alkadhimi, Basim Mohamed;Radhi, Hussein Sultan;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.4
    • /
    • pp.259-274
    • /
    • 2019
  • Flexoelectric effect has a major role on mechanical responses of piezoelectric materials when their dimensions become submicron. Applying differential quadrature (DQ) method, the present article studies dynamic characteristics of a small scale beam made of piezoelectric material considering flexoelectric effect. In order to capture scale-dependency of such piezoelectric beams, nonlocal elasticity theory is utilized and also surface effects are included for better structural modeling. Governing equations have been derived by utilizing Hamilton's rule with the assumption that the scale-dependent beam is subjected to thermal environment leading to uniform temperature variation across the thickness. Obtained results based on DQ method are in good agreement with previous data on pizo-flexoelectric beams. Finally, it would be indicated that dynamic response characteristics and vibration frequencies of the nano-size beam depends on the existence of flexoelectric influence and the magnitude of scale factors.

The Defect Characterization of Rare-earth Intensifying Screen Material by Doppler Broadening Positron Annihilation Spectrometer (도플러 넓어짐 스펙트럼을 이용한 희토류 증감지 결함 특성)

  • Lee C. Y.;Kim C. G.;Song G. Y.;Kim J. H.
    • Korean Journal of Materials Research
    • /
    • v.15 no.6
    • /
    • pp.370-374
    • /
    • 2005
  • Doppler broadening spectrometer for positron annihilation experiment(DBPAS) has been used to characterize nano size defect structures in materials. DBPAS measures the concentration, spatial distribution, and size of open volume defects in the rare-earth intensifying screen materials. The screens were exposed by X-ray varying the exposed doses from 3, 6, 9, and 12 Gy with 6 W and 15 MV respectively and also irradiated by 37 MeV proton beams ranging from 0 to $10^{12}ptls$. The S parameter values increased as the exposed time and the energies increased, which indicated the defects were generated more. The S parameters of the samples with X-rays varied from 0.5098 to 0.5108, on the other hand, as proton beams varied from 0.4804 to 0.4821.

A refined nonlocal hyperbolic shear deformation beam model for bending and dynamic analysis of nanoscale beams

  • Bensaid, Ismail
    • Advances in nano research
    • /
    • v.5 no.2
    • /
    • pp.113-126
    • /
    • 2017
  • This paper proposes a new nonlocal higher-order hyperbolic shear deformation beam theory (HSBT) for the static bending and vibration of nanoscale-beams. Eringen's nonlocal elasticity theory is incorporated, in order to capture small size effects. In the present model, the transverse shear stresses account for a hyperbolic distribution and satisfy the free-traction boundary conditions on the upper and bottom surfaces of the nanobeams without using shear correction factor. Employing Hamilton's principle, the nonlocal equations of motion are derived. The governing equations are solved analytically for the edges of the beam are simply supported, and the obtained results are compared, as possible, with the available solutions found in the literature. Furthermore, the influences of nonlocal coefficient, slenderness ratio on the static bending and dynamic responses of the nanobeam are examined.