• Title/Summary/Keyword: Nano beams

Search Result 129, Processing Time 0.029 seconds

Optical nonlinearity in genetic material (유전물질의 비선형 광학 특성)

  • Park, Byeongho;Jun, Seong Chan
    • Transactions of the Society of Information Storage Systems
    • /
    • v.10 no.1
    • /
    • pp.19-22
    • /
    • 2014
  • Optical nonlinear property is utilized to the wave generation, generating the beam at intended wavelength, and optical computing systems. The genetic material, which is the DNA with helical structure in nano-scale, is fascinating for optics communities due to artificially controllable sequence that determines the physical and chemical property. Nonlinearity of DNA was investigated by the four wave mixing experiment, which is with two incident beams located at 1550nm and 1650nm. The four output beams including incident beams are emitted from genetic material such as 1461nm and 1763nm by nonlinear characteristic. The 1461nm beam which is generated by four wave mixing phenomena was observed by optical spectrum analyzer.

Nonlinear static analysis of smart beams under transverse loads and thermal-electrical environments

  • Ali, Hayder A.K.;Al-Toki, Mouayed H.Z.;Fenjan, Raad M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2022
  • This research has been devoted to examine nonlinear static bending analysis of smart beams with nano dimension exposed to thermal environment. The beam elastic properties are corresponding to piezo-magnetic material of different compositions. The large deflection analysis of the beam has been performed assuming that the beam is exposed to transverse uniform pressure. Based on the rule of Hamilton, the governing equations have been derived for a nonlocal thin beam and solved using differential quadrature method. Temperature variation effect on nonlinear deflection of the smart beams has been studied. Also, the beam deflection is shown to be affected by electric voltage, magnetic intensity and material composition.

Analysis of Porous Beams Through FEM Simulation (유한요소해석을 통한 다공성 보의 거동 분석)

  • Kim, Hyun-Young;Kim, Jun-Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.3
    • /
    • pp.201-207
    • /
    • 2020
  • In this study, various types of porous beams were designed and analyzed to examine the relationship between the behavior of a porous beam and certain nonlocal parameters. The nonlocal parameters were defined as functions of the conditions of defects in the porous material. Finite element analysis was conducted on the beams under typical boundary and loading conditions. Beams with stiffeners having the same dimensions as the defects in the porous beams were also analyzed. The deformation tendency of these beams was determined and described in terms of the nonlocal parameters. The deformation of a porous beam was linearly proportional to the square of the diameters of the defects, whereas that of a beam with a stiffener was linearly proportional to the cube of the diameter of the stiffener. Furthermore, for a stiffened beam with axial loading, the results derived from a 3D solid element and those under 2D plane stress conditions were different.

Experimental tensile test and micro-mechanic investigation on carbon nanotube reinforced carbon fiber composite beams

  • Emrah Madenci;Yasin Onuralp Ozkilic;Ahmad Hakamy;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.443-450
    • /
    • 2023
  • Carbon nanotubes (CNTs) have received increased interest in reinforcing research for polymer matrix composites due to their exceptional mechanical characteristics. Its high surface area/volume ratio and aspect ratio enable polymer-based composites to make the most of its features. This study focuses on the experimental tensile testing and fabrication of carbon nanotube reinforced composite (CNTRC) beams, exploring various micromechanical models. By examining the performance of these models alongside experimental results, the research aims to better understand and optimize the mechanical properties of CNTRC materials. Tensile properties of neat epoxy and 0.3%; 0.4% and 0.5% by CNT reinforced laminated single layer (0°/90°) carbon fiber composite beams were investigated. The composite plates were produced in accordance with ASTM D7264 standard. The tensile test was performed in order to see the mechanical properties of the composite beams. The results showed that the optimum amount of CNT was 0.3% based on the tensile capacity. The capacity was significantly reduced when 0.4% CNT was utilized. Moreover, the experimental results are compared with Finite Element Models using ABAQUS. Hashin Failure Criteria was utilized to predict the tensile capacity. Good conformance was observed between experimental and numerical models. More importantly is that Young' Moduli of the specimens is compared with the prediction Halpin-Tsai and Mixture-Rule. Although Halpin-Tsai can accurately predict the Young's Moduli of the specimens, the accuracy of Mixture-Rule was significantly low.

An efficient numerical model for free vibration of temperature-dependent porous FG nano-scale beams using a nonlocal strain gradient theory

  • Tarek Merzouki;Mohammed SidAhmed Houari
    • Structural Engineering and Mechanics
    • /
    • v.90 no.1
    • /
    • pp.1-18
    • /
    • 2024
  • The present study conducts a thorough analysis of thermal vibrations in functionally graded porous nanocomposite beams within a thermal setting. Investigating the temperature-dependent material properties of these beams, which continuously vary across their thickness in accordance with a power-law function, a finite element approach is developed. This approach utilizes a nonlocal strain gradient theory and accounts for a linear temperature rise. The analysis employs four different patterns of porosity distribution to characterize the functionally graded porous materials. A novel two-variable shear deformation beam nonlocal strain gradient theory, based on trigonometric functions, is introduced to examine the combined effects of nonlocal stress and strain gradient on these beams. The derived governing equations are solved through a 3-nodes beam element. A comprehensive parametric study delves into the influence of structural parameters, such as thicknessratio, beam length, nonlocal scale parameter, and strain gradient parameter. Furthermore, the study explores the impact of thermal effects, porosity distribution forms, and material distribution profiles on the free vibration of temperature-dependent FG nanobeams. The results reveal the substantial influence of these effects on the vibration behavior of functionally graded nanobeams under thermal conditions. This research presents a finite element approach to examine the thermo-mechanical behavior of nonlocal temperature-dependent FG nanobeams, filling the gap where analytical results are unavailable.

Analytical nonlocal elasticity solution and ANN approximate for free vibration response of layered carbon nanotube reinforced composite beams

  • Emrah Madenci;Saban Gulcu;Kada Draiche
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.251-263
    • /
    • 2024
  • This article investigates the free vibration behavior of carbon nanotube reinforced composite (CNTRC) beams embedded using variational analytical methods and artificial neural networks (ANN). The material properties of layered functionally graded CNTRC (FG-CNTRC) beams are estimated using nonlocal parameters modified power-law with different types of CNT distributions through the thickness direction of the beam. Adopting Eringen's nonlocal elasticity theory to capture the small size effects, the nonlocal governing equations are derived and solved using the analytical method. And also, the problem was analyzed using the ANN method. The architecture of the proposed ANN model is 3-9-1. In the experiments, we used 112 different data to predict the natural frequency using ANN. Based on the nonlocal differential constitutive relations of Eringen, the equations of motion as well as the boundary conditions of the beam are derived using Hamilton's principle. The classical beam theory is used to formulate a governing equation for predicting the free vibration of laminated CNTRC beams. According to the experimental results, the prediction ability of the ANN model is very good and the natural frequency can be predicted in ANN without attempting any experiments.

Optimization of shear connectors with high strength nano concrete using soft computing techniques

  • Sedghi, Yadollah;Zandi, Yosef;Paknahad, Masoud;Assilzadeh, Hamid;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • v.11 no.6
    • /
    • pp.595-606
    • /
    • 2021
  • This paper conducted mainly for forecasting the behavior of the shear connectors in steel-concrete composite beams based on the different factors. The main goal was to analyze the influence of variable parameters on the shear strength of C-shaped and L-shaped angle shear connectors. The method of ANFIS (adaptive neuro fuzzy inference system) was applied to the data in order to select the most influential factors for the mentioned shear strength forecasting. Five inputs are considered: height, length, thickness of shear connectors together with concrete strength and respective slip of the shear connectors after testing. The ANFIS process for variable selection was also implemented in order to detect the predominant factors affecting the forecasting of the shear strength of C-shaped and L-shaped angle shear connectors. The results show that the forecasting methodology developed in this research is useful for enhancing the multiple performances characterizing in the shear strength prediction of C and L shaped angle shear connectors analyzing.

Mutually-Actuated-Nano-Electromechanical (MA-NEM) Memory Switches for Scalability Improvement

  • Lee, Ho Moon;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.2
    • /
    • pp.199-203
    • /
    • 2017
  • Mutually-actuated-nano-electromechanical (MA-NEM) memory switches are proposed for scalability improvement. While conventional NEM memory switches have fixed electrode lines, the proposed MA-NEM memory switches have mutually-actuated cantilever-like electrode lines. Thus, MA-NEM memory switches show smaller deformations of beams in switching. This unique feature of MA-NEM memory switches allows aggressive reduction of the beam length while maintaining nonvolatile property. Also, the scalability of MA-NEM memory switches is confirmed by using finite-element (FE) simulations. MA-NEM memory switches can be promising solutions for reconfigurable logic (RL) circuits.

Ion Beam Induced Micro/Nano Fabrication: Modeling (이온빔을 이용한 마이크로/나노 가공: 모델링)

  • Kim, Heung-Bae;Hobler, Gerhard
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.108-115
    • /
    • 2007
  • 3D nano-scale manufacturing is an important aspect of advanced manufacturing technology. A key element in ability to view, fabricate, and in some cases operate micro-devices is the availability of tightly focused particle beams, particularly of photons, electrons, and ions. The use of ions is the only way to fabricate directly micro-/ nano-scale structures. It has been utilized as a direct-write method for lithography, implantation, and milling of functional devices. The simulation of ion beam induced physical and chemical phenomena based on sound mathematical models associated with simulation methods is presented for 3D micro-/nanofabrication. The results obtained from experimental investigation and characteristics of ion beam induced direct fabrication will be discussed.

A New Trend of In-situ Electron Microscopy with Ion and Electron Beam Nano-Fabrication

  • Furuya, Kazuo;Tanaka, Miyoko
    • Applied Microscopy
    • /
    • v.36 no.spc1
    • /
    • pp.25-33
    • /
    • 2006
  • Nanofabrication with finely focused ion and electron beams is reviewed, and position and size controlled fabrication of nano-metals and -semiconductors is demonstrated. A focused ion beam (FIB) interface attached to a column of 200keV transmission electron microscope (TEM) was developed. Parallel lines and dots arrays were patterned on GaAs, Si and $SiO_2$ substrates with a 25keV $Ga^+-FIB$ of 200nm beam diameter at room temperature. FIB nanofabrication to semiconductor specimens caused amorphization and Ga injection. For the electron beam induced chemical vapor deposition (EBI-CVD), we have discovered that nano-metal dots are formed depending upon the beam diameter and the exposure time when decomposable gases such as $W(CO)_6$ were introduced at the beam irradiated areas. The diameter of the dots was reduced to less than 2.0nm with the UHV-FE-TEM, while those were limited to about 15nm in diameter with the FE-SEM. Self-standing 3D nanostructures were also successfully fabricated.