• 제목/요약/키워드: Nano Scale Machining

검색결과 42건 처리시간 0.034초

음향방출과 다구찌 방법을 이용한 나노머시닝 가공조건의 최적화 (Optimization of Nano Machining Parameters Using Acoustic Emission and the Taguchi Method)

  • 이성환;손정무
    • 한국정밀공학회지
    • /
    • 제21권3호
    • /
    • pp.163-170
    • /
    • 2004
  • Atomic force microscope (AFM) techniques are increasingly used fur tribological studies of engineering surfaces at scales ranging from atomic and molecular to micro-scale. Recently, AFM with suitable tips is being used for nano fabrication/nano machining purposes. In this paper, machining characteristics of silicon were investigated by nano indentation and nano scratch. Nano-scale material removal mechanisms are studied and the Taguchi method was introduced to acquire optimum parameters for nano machining. Also, Acoustic Emission (AR) is used for the monitoring of nano machining.

나노사출성형용 스탬퍼 제작을 위한 Electron beam lithography 패터닝 연구 (Electron beam lithography patterning research for stamper fabrication using nano-injection molding)

  • 엄상진;서영호;유영은;최두선;제태진;황경현
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.698-701
    • /
    • 2005
  • We have investigated experimentally a nano patterning using electron beam lithography for the nickel stamper fabrication. Recently, DVD and Blu-ray disk(BD) have nano-scale patterns in order to increase the storage density. Specially, BD has 100nm-scale patterns which are generally fabricated by electron beam lithography. In this paper, we found optimum condition of electron-beam lithography for 100nm-scale patterning. We controlled various conditions of EHP(acceleration voltage), beam current, dose and aperture size in order to obtain optimum conditions. We used 100nm-thick PMMA layer on a silicon wafer as photoresist. We found that EHP was the most dominant factor in electron-beam lithography.

  • PDF

수직응력과 압입이론에 기반한 나노스케일 기계가공에서의 크기효과 분석 (Analysis of Size Effect of Nano Scale Machining Based on Normal Stress and Indentation Theories)

  • 전은채;이윤희;제태진
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.1-6
    • /
    • 2018
  • Recently nano meter size pattern (sub-micro scale) can be machined mechanically using a diamond tool. Many studies have found a 'size effect' which referred to a specific cutting energy increase with the decrease in the uncut chip thickness at micro scale machining. A new analysis method was suggested in order to observe 'size effect' in nano scale machining and to verify the cause of the 'size effect' in this study. The diamond tool was indented to a vertical depth of 1,000nm depth in order to simplify the stress state and the normal force was measured continuously. The tip rounding was measured quantitatively by AFM. Based on the measurements and theoretical analysis, it was verified that the main cause of the 'size effect' in nano scale machining is geometrically necessary dislocations, one of the intrinsic material characteristics. st before tool failure.

FIB를 이용한 나노가공공정 기술 개발 (Development of Nano Machining Technology using Focused ion Beam)

  • 최헌종;강은구;이석우;홍원표
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.482-486
    • /
    • 2004
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its use in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies, such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries. This paper presents that the recent development and our research goals in FIB nano machining technology are given. The emphasis will be on direct milling, or chemical vapor deposition techniques (CVD), and this can distinguish the FIB technology from the contemporary photolithography process and provide a vital alternative to it. After an introduction to the technology and its FIB principles, the recent developments in using milling or deposition techniques for making various high-quality devices and high-precision components at the micro/nano meter scale are examined and discussed. Finally, conclusions are presented to summarize the recent work and to suggest the areas for improving the FIB milling technology and for studying our future research.

  • PDF

미소가공을 위한 마이크로 밀링머신 개발 (The Development of Micro Milling Machine for Micro Machining)

  • 황준
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2005년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2005
  • Today, manufacturing capability at the micro or nano scale production field is requested strongly in view of parts and product miniaturization. Miniaturized parts and products will introduce lots of benefits in terms of high precision functionality and low energy consumption. This paper presents the results of micro milling machine tool development for micro machining process. Finite element analysis has been performed to know the relationship between design dimensional variables and structural stiffness in terms of static, dynamic, thermal aspects. Performance evaluation through machining has been tested and discussed for achievable machining characteristics.

  • PDF

고온 임프린팅을 통한 알루미늄합금 표면의 마이크로/나노 구조 성형 기술 (Hot Imprinted Hierarchical Micro/Nano Structures on Aluminum Alloy Surfaces)

  • 문인용;이호원;오영석;김세종;김지훈;강성훈
    • 소성∙가공
    • /
    • 제28권5호
    • /
    • pp.239-246
    • /
    • 2019
  • Various surface texturing techniques have been studied because of the effective applicability of micro or nano scale surface patterns. Particularly, the most promising types of patterns include the hierarchical patterns, which consists of micro/nano structures. Different processes such as MEMS, laser machining, micro cutting and micro grinding have been applied in the production of hierarchical patterns on various material surfaces. This study demonstrates the process of hot imprinting to induce the hierarchical patterns on the Al alloy surfaces. Wire electrical discharge machining (WEDM) process was used to imprint molds with micro scale sinusoidal pattern. In addition, the sinusoidal pattern with rough surface morphology was obtained as a result of the discharge craters. Consequently, the hierarchical patterns consisting of the sinusoidal pattern and the discharge craters were prepared on the imprinting mold surface. Hot imprinting process for the Al plates was conducted on the prepared mold, and the replication performance was analyzed. As a result, it was confirmed that the hierarchical patterns of the mold were effectively duplicated on the surface of Al plate.

방전/전해 가공을 이용한 미세금형가공 (Micro Mold Machining Using EDM/ECM)

  • 정도관;신홍식;최세환;김보현;주종남
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 춘계학술대회 논문집
    • /
    • pp.75-78
    • /
    • 2007
  • Recently, the need for micro mold or micro mechanical parts has been rapidly increased. As feature size decreases, conventional machining processes show their limitation. Micro electrical discharging machining (EDM) and electrochemical machining (ECM) have many advantages in micro machining. They can be used to make structures of micro scale, or even nano scale size. In this paper, the application of micro EDM and ECM has been investigated.

  • PDF

나노스크래치와 KOH 에칭 기술을 병용한 Si (100) 패턴제작 (Pattern Fabrication on Si (100) Surface by Using Both Nanoscratch and KOH Etching Technique)

  • 윤성원;이정우;강충길
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 춘계학술대회논문집
    • /
    • pp.448-451
    • /
    • 2003
  • This study describes a new maskless nano-fabrication technique of Si (100) using the combination of nanometer-scale mechanical forming by nano-indenter XP and KOH wet etching. First the surface of a Si (100) specimen was machined by using the nano-machining system, which utilizes the mechanism of the nano-indenter XP. Next, the specimen was etched by KOH solution. After the etching process, the convex structure or deeper hole is made because of masking or promotion effect of the affected layer generated by nano-machining. On the basis of this interesting fact, some sample structures were fabricated.

  • PDF

롤압연, 압출, 단조 등 전통 기계가공법의 모사 응용을 통한 다양한 나노패턴의 대면적 연속생산 기술 구현 (Development of Continuous and Scalable Nanomanufacturing Technologies Inspired by Traditional Machining Protocols Such as Rolling, Pullout, and Forging)

  • 옥종걸;곽문규
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.198-202
    • /
    • 2015
  • We present a series of simple but novel nanopatterning methodologies inspired by traditional mechanical machining processes involving rolling, pullout, and forging. First, we introduce roll-to-roll nanopatterning, which adapts conventional rolling for continuous nanopatterning. Then, nano-inscribing and nano-channel lithography are demonstrated, whereby seamless nanogratings can be continuously pulled out, as in a pullout process. Finally, we discuss vibrational indentation micro- and nanopatterning. Similarly to the forging/indentation process, this technique employs high-frequency vertical vibration to indent periodic micro/nanogratings onto a horizontally fed substrate. We discuss the basic principles of each process, along with its advantages, disadvantages, and potential applications. Adopting mature and reliable traditional technologies for small-scale machining may allow continuous nanopatterning techniques to cope with scalable and low-cost nanomanufacturing in a more productive and trustworthy way.