• Title/Summary/Keyword: Nano Oxide

Search Result 1,163, Processing Time 0.023 seconds

Effect of Process Variables and exisisting Ions on Highly Active Nano-sized ITO Powders Prepared by Precipitation Method (고활성 ITO (Indium-Tin Oxide) 나노 분말을 침전법으로 합성시의 공정 변수 및 존재하는 이온의 영향)

  • Lee, In-Gyu;Noh, Bong-Hyun
    • Journal of Powder Materials
    • /
    • v.15 no.6
    • /
    • pp.450-457
    • /
    • 2008
  • The objectives of this study were the development of a synthesis technique for highly active nanosized ITO powder and the understanding of the reaction mechanisms of the ITO precursors. The precipitation and agglomeration phenomena in ITO and $In_{2}O_{3}$ precursors are very sensitive to reaction temperature, pH, and coexisting ion species. Excessive $Cl^-$ ion and $Sn^{+4}$ ions had a negative effect an synthesizing highly active powders. However, with a relevant stabilizing treatment the shape and size of ITO and $In_{2}O_{3}$ precursors could be controlled and high density sintered products of ITO were obtained. By applying the reprecipitation process (or stabilization technique), highly active ITO and $In_{2}O_{3}$ powders were synthesized. Sintering these powders at $1500^{\circ}C$ for 5 hours produced 97% dense ITO bodies.

Catalytic Ozonation of Phenol in Aqueous Solution by Co3O4 Nanoparticles

  • Dong, Yuming;Wang, Guangli;Jiang, Pingping;Zhang, Aimin;Yue, Lin;Zhang, Xiaoming
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2830-2834
    • /
    • 2010
  • The degradation efficiencies of phenol in aqueous solution were studied by semi-continuous experiments in the processes of ozone alone, ozone/bulky $Co_3O_4$ and ozone/$Co_3O_4$ nanoparticles. Catalyst samples (bulky $Co_3O_4$ and $Co_3O_4$ nanoparticles) were characterized by X-ray diffraction and transmission electron microscopy. The Brunauer-Emmett-Teller surface area, $pH_{pzc}$ and the density of surface hydroxyl groups of the two catalyst samples were also measured. The catalytic activity of $Co_3O_4$ nanoparticles was investigated for the removal of phenol in aqueous solutions under different reaction temperatures. Tert-butyl alcohol had little effect on the catalytic ozonation processes. Based on these results, the possible catalytic ozonation mechanism of phenol by $Co_3O_4$ nanoparticles was proposed as a reaction process between ozone molecules and pollutants.

Carbon nanotubes synthesis using diffusion and premixed flame methods: a review

  • Mittal, Garima;Dhand, Vivek;Rhee, Kyong Yop;Kim, Hyeon-Ju;Jung, Dong Ho
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2015
  • In recent years, flame synthesis has absorbed a great deal of attention as a combustion method for the production of metal oxide nanoparticles, carbon nanotubes, and other related carbon nanostructures, over the existing conventional methods. Flame synthesis is an energy-efficient, scalable, cost-effective, rapid and continuous process, where flame provides the necessary chemical species for the nucleation of carbon structures (feed stock or precursor) and the energy for the production of carbon nanostructures. The production yield can be optimized by altering various parameters such as fuel profile, equivalence ratio, catalyst chemistry and structure, burner configuration and residence time. In the present report, diffusion and premixed flame synthesis methods are reviewed to develop a better understanding of factors affecting the morphology, positioning, purity, uniformity and scalability for the development of carbon nanotubes along with their correlated carbonaceous derivative nanostructures.

The Preparation of Blue CoAl2O4 Powders by the Malonate Method: The Effect of the Amount of Malonic Acid Used, the Formation Pathway of CoAl2O4 Crystallites and the Characteristics of the Prepared Powders

  • Lee, Gong-Yeol;Ryu, Kwang-Hyun;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.373-377
    • /
    • 2009
  • A pathway for the formation of normal $CoAl_2O_4$ particles is suggested. The optimal amount of malonic acid was determined, and the characteristics of the obtained powders were investigated. Normal $CoAl_2O_4$ powders were prepared using solutions of malonic acid and metal nitrates. X-ray diffraction, Brunauer-Emmett-Teller (BET) and scanning electron microscope (SEM) measurements, as well as Fourier transform infrared (FTIR) and ultraviolet/visible (UV-Vis) spectroscopy were carried out. Normal $CoAl_2O_4$ crystallites were formed by a solid state reaction between $CoAl_2O_4$ and amorphous aluminum oxide. The optimal molar ratio of malonic acid to the nitrate anions present in the initial solution was found to be 0.30~0.35. The particles were composed of agglomerates of primary particles. The primary particles were 40 nm in size. This size was relatively constant regardless of the preparation temperature. However, the size of the agglomerated particles increased to 220 nm with increasing temperature.

Electrical Characteristics of Engineered Tunnel Barrier using $SiO_2/HfO_2$ and $Al_2O_3/HfO_2$ stacks ($SiO_2/HfO_2$$Al_2O_3/HfO_2$를 이용한 Engineered Tunnel Barrier의 전기적 특성)

  • Kim, Kwan-Su;Park, Goon-Ho;Yoon, Jong-Won;Jung, Jong-Wan;Cho, Won-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.127-128
    • /
    • 2008
  • The electrical characteristics of VARIOT (variable oxide thickness) with various $HfO_2$ thicknesses on thin $SiO_2$ or $Al_2O_3$ layer were investigated. Especially, the charge trapping characteristics of $HfO_2$ layer were intensively studied. The thin $HfO_2$ layer has small charge trapping characteristics while the thick $HfO_2$ layer has large memory window. Therefore, the $HfO_2$ layer is superior material and can be applied to charge storage as well as tunneling barrier of the non-volatile memory applications.

  • PDF

Department of Nano Semiconductor, Korea Maritime University (RF-스퍼터링의 파워변화에 따른 플라스틱 기판 위에 증착된 ZnO박막의 구조적, 광학적 특성)

  • Kim, Jun-Je;Kim, Hong-Seung;Lee, Joo-Young;Lee, Jong-Hoon;Lee, Da-Jung;Lee, Won-Jae;Shan, F.K.;Cho, Chae-Ryong;Kim, Jin-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.214-215
    • /
    • 2008
  • Zinc-oxide(ZnO) films were deposited on PC(polycarboanate) and PES(polyethersulphone) substrates by using RF(radio-frequency)sputter with various rf sputtering Power at a room temperature. The effects of rf sputtering Power on the structural and optical properties of ZnO films were investigated by using atomic force microscopy, X-ray diffraction, and UV spectrophotometer. The most excellent structural and properties of a ZnO film are obtained in the condition of an rf-power of 150 W. This film shows larger Grain size and lower surface roughness and a higher optical transmittance of over 80 % in the visible range than other films deposited in the different conditions of rf- power. Regardless of substrate types, The presence of a strong diffraction peak indicates that films have a (0 0 2) preferred orientation associated with the hexagonal phase.

  • PDF

Micro Pre-concentration and Separation of Metal Ions Using Microchip Column Packed with Magnetic Particles Immobilized by Aminobenzyl Ethylenediaminetetraacetic Acid

  • Kim, Y.H.;Kim, G.Y.;Lim, H.B.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.905-909
    • /
    • 2010
  • Magnetic beads (Dynabeads$^{(R)}$) embedded in ~1 micron size polystyrene beads bearing surface carboxylic acid groups were modified with aminobenzyl ethylenediaminetetraacetic acid (ABEDTA) to concentrate or separate metal ions using pH gradients on micro and nano scales. The immobilization of ABEDTA was achieved by amide formation. The presence of the metal chelating functional group in the fully deprotonated form was confirmed by FT-IR. The chelation efficiency of beads was tested by determining metal ions in supernatant using GFAAS when pH gradients from 3 to 7. Mixtures of Cu and Mg and of Cd and Mn (at 10 ng/mL of metal) were separated as the difference in formation constant with the functional group of ABEDTA. The separation was repeated twice with relative standard deviation of <18%. A polydimethylsiloxane (PDMS) microchip column packed with EDTA-coated magnetic beads was optimized to concentrate metal ion for practical applications by eluting a Cu solution of micro scale at pH 3.

The Characteristics of YAG:Ce Phosphor Powder Prepared Using a NO3--Malonic Acid-NH4NO3-NH3·H2O System

  • Jeong, Jin-An;Park, Kyung-Hwan;Lee, Dong-Hoon;Kim, Hong-Gun;Kim, Yoo-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1141-1146
    • /
    • 2012
  • Ce-doped $Y_3Al_5O_{12}$ (YAG:Ce) phosphor powder was prepared using a ${NO_3}^-$-malonic acid-$NH_4NO_3-NH_3{\cdot}H_2O$ system. The YAG:Ce precursor was ignited at $240^{\circ}C$ and the resulting powder contained YAG:Ce crystallites (42%) - active in the visible region at 460 nm - amorphous particles (53%) - inactive at visible wavelengths - and less than 3% oxide (3%) crystallite impurities. The impurities transformed to acitive YAG:Ce crystallites at above $800^{\circ}C$. At above $1000^{\circ}C$, the amorphous phase became YAG phase and isolated $Ce_2O$ crystallites emerged. The powder particles comprised < $4{\mu}m$ secondary aggregates of 20 nm primary particles. The thermal dusting of the secondary particles coincided with the aggregation of the secondary particles at above $900^{\circ}C$.

Rate Expression of Fischer-Tropsch Synthesis Over Co-Mn Nanocatalyst by Response Surface Methodology (RSM)

  • Mansouri, Mohsen;Atashi, Hossein;Khalilipour, Mir Mohammad;Setareshenas, Naimeh;Shahraki, Farhad
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.769-777
    • /
    • 2013
  • The effect of operating conditions (temperature and the partial pressures of H2 and CO) on the reaction rate of Fischer-Tropsch synthesis (FTS) were investigated by carrying out experiments according to a Box-Behnken design (BBD), and were mathematically modeled by using response surface methodology (RSM). The catalyst used was a nano-structured cobalt/manganese oxide catalyst, which was prepared by thermal decomposition. The rate of synthesis was measured in a fixed-bed micro reactor with $H_2/CO$ molar feed ratio of 0.32-3.11 and reactor pressure in the range of 3-9.33 bar at space velocity of $3600h^{-1}$ and a temperature range of 463.15-503.15 K, under differential conditions (CO conversion below 2%). The results indicated that in the present experimental setup, the temperature and the partial pressure of CO were the most significant variables affecting reaction rate. Based on statistical analysis the quadratic model of reaction rate of FTS was highly significant as p-value 0.0002.

$Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni Composite Membrane for Hydrogen Separation by Aerosol Deposition Method (에어로졸 증착법[aerosol depostion method]에 의한 $Ba[Ce_{0.9}Y_{0.1}]O_{3-\delta}$ - Ni 수소분리막 제조)

  • Park, Young-Soo;Byeon, Myeong-Seob;Choi, Jin-Sub;Kim, Jin-Ho;Hwang, Kwang-Taek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.2
    • /
    • pp.117-122
    • /
    • 2010
  • BCY($Ba(Ce_{0.9}Y_{0.1})O_{3-\delta}$) oxide, shows high protonic conductivity at high temperatures, and are referred to as hydrogen separation membrane. For high efficiency of hydrogen separation ($H_2$ flux and selectivity) and low fabrication cost, ultimate thin and dense BCY-Ni layer have to be coated on a porous substrate such as $ZrO_2$. Aerosol depostion (AD) process is a novel technique to grow ceramic film with high density and nano-crystal structure at room-temperature, and would be applied to the fabrication process of AD integration ceramic layer effectively. XRD and SEM measurements were conducted in order to analyze the characteristics of BCY-Ni membrane fabricated by AD process.