• 제목/요약/키워드: Nano Oxide

검색결과 1,159건 처리시간 0.027초

리튬이 첨가된 니켈 산화물 나노튜브의 수소저장 ([ $H_2$ ] uptake of the Li dispersed nickel oxide nanotubes)

  • 이진배;이순창;이상문;이영석;김해진
    • 한국수소및신에너지학회논문집
    • /
    • 제17권1호
    • /
    • pp.39-46
    • /
    • 2006
  • Highly ordered Li dispersed nickel oxide nanotubes were prepared with anodic aluminum oxide (AAO) template for hydrogen storage. Electron microscope results showed that uniform length and diameter of nickel oxide nanotubes were obtained. The wall thickness and outer diameter of nickel oxide nanotubes are about 40 - 50 nm and 200 - 400 nm, respectively. It was observed that the diameter of nickel oxide nanotubes is bigger than the pore diameter of AAO template. Li dispersed nickel oxide were consisted of nanoflakes and had structures of nanotubes and nanorods. For increasing the hydrogen adsorption and desorption capacity, the Li dispersed nickel oxide nanotubes were fluorinated. The fluorinated Li dispersed nickel oxide nanotubes showed 1.65 wt% of the hydrogen adsorption capacities at 77 K under 47 atm.

나노 인텐테이션을 이용한 산화알루미늄(AAO, Anodic Aluminum Oxide)구조물의 물성치에 대한 연구 (The study on properties of AAO(Anodic Aluminum Oxide) structures using nano indentation)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.144-149
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometerscale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective method to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

  • PDF

Carboxylic acid와 nano zinc oxide를 도입한 열가소성 폴리우레탄 탄성체의 슬립특성 및 기계적 물성에 관한 연구 (Studies on Slip and Mechanical Properties of Thermoplastic Polyurethane Elastomer with Carboxylic acid and Nano zinc oxide)

  • 신현등;김동호;김구니
    • Elastomers and Composites
    • /
    • 제49권3호
    • /
    • pp.191-198
    • /
    • 2014
  • 산성기를 도입한 폴리우레탄에 나노산화아연을 첨가하여 열가소성 폴리우레탄 탄성체를 합성하였으며, 합성된 폴리우레탄 탄성체의 기계적물성, 열적특성, 접촉각, 그립특성을 평가하였다. 그리고 산화아연의 함량과 입자 크기가 폴리우레탄 탄성체에 미치는 영향에 대해서 연구하였다. 나노산화아연을 도입한 경우 이온결합이 형성되어 산성기에 의한 수소결합과 동시에 작용하기 때문에 인장강도, 마모 등 기계적 물성 및 그립특성이 향상되는 것이 확인되었다. 폴리우레탄내의 산화아연 함량에 따른 물성평가 결과 나노산화아연 함량이 증가할수록 이온결합 도입에 의한 친수성이 커져서 wet slip이 지속적으로 상승되었으며, 기계적 물성은 산화아연에 의한 이온화율 50%까지 향상되다가 그 이후에는 감소되는 현상을 나타내었다.

Hole effect를 고려한 AAO(Anodic Aluminum Oxide) 구조물의 물성치에 대한 연구 (The Study on Properties of AAO(Anodic Aluminum Oxide) Structures with Hole Effect)

  • 고성현;이대웅;지상은;박현철;이건홍;황운봉
    • 한국정밀공학회지
    • /
    • 제21권4호
    • /
    • pp.186-193
    • /
    • 2004
  • Porous anodic alumina has been used widely for corrosion protection of aluminum surfaces or as dielectric material in micro-electronics applications. It exhibits a homogeneous morphology of parallel pores which can easily be controlled between 10 and 400nm. It has been applied as a template for fabrication of the nanometer-scale composite. In this study, mechanical properties of the AAO structures are measured by the nano indentation method. Nano indentation technique is one of the most effective methods to measure the mechanical properties of nano-structures. Basically, hardness and elastic modulus can be obtained by the nano-indentation. Using the nano-indentation method, we investigated the mechanical properties of the AAO structure with different size of nano-holes. In results, we find the hole effect that changes the mechanical properties as size of nano hole.

양극산화 알루미늄을 이용한 나노패턴 성형용 금형제작 (Fabrication of Nano-Pattern Mold Using Anodic Aluminum Oxide Template)

  • 오정길;김종선;강정진;김종덕;윤경환;황철진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.240-243
    • /
    • 2009
  • Recently, many researches on the development of super-hydrophobic and anti-reflective surfaces have been concentrated on the fabrication of nano-patterned products. The nano-patterned mold is a key to replicate nano-patterned products by mass production techniques such as injection molding and UV molding. The present paper proposes fabricating nano-patterned mold with cost-effective method. The nano-pattern molded was fabricated by electroforming the anodic aluminum oxide template without E-beam lithography. The final mold with nano-patterns showed the pores with the diameter of $100{\sim}120$ nm and the height of 150 nm was fabricated.

  • PDF

Enhanced alizarin removal from aqueous solutions using zinc Oxide/Nickel Oxide nano-composite

  • Basma E. Jasim;Ali J. A. Al-Sarray;Rasha M. Dadoosh
    • 분석과학
    • /
    • 제37권1호
    • /
    • pp.39-46
    • /
    • 2024
  • Alizarin dye, a persistent and hazardous contaminant in aquatic environments, presents a pressing environmental concern. In the quest for efficient removal methods, adsorption has emerged as a versatile and sustainable approach. This study focuses on the development and application of Zinc Oxide/Nickel Oxide (ZnO/NiO) nano-composites as adsorbents for alizarin dye removal. These semiconducting metal oxide nano-composites exhibit synergistic properties, offering enhanced adsorption capabilities. Key parameters affecting alizarin removal, such as contact time, adsorbent dosage, pH, and temperature, were systematically investigated. Notably, the ZnO/NiO nano-composite demonstrated superior performance, with a maximum alizarin removal percentage of 76.9 % at pH 6. The adsorption process followed a monolayer pattern, as suggested by the Langmuir model. The pseudo-second-order kinetics model provided a good fit to the experimental data. Thermodynamic analysis indicated that the process is endothermic and thermodynamically favorable. These findings underscore the potential of ZnO/NiO nano-composites as effective and sustainable adsorbents for alizarin dye removal, with promising applications in wastewater treatment and environmental remediation.

양극산화와 나노 다이아몬드 분말 봉공처리에 의한 마그네슘의 경도와 부식에 관한 연구 (Study on Hardness and Corrosion Resistance of Magnesium by Anodizing and Sealing Treatment With Nano-diamond Powder)

  • 강수영;이대원
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.260-265
    • /
    • 2014
  • In this study, in order to increase surface ability of hardness and corrosion of magnesium alloy, anodizing and sealing with nano-diamond powder was conducted. A porous oxide layer on the magnesium alloy was successfully made at $85^{\circ}C$ through anodizing. It was found to be significantly more difficult to make a porous oxide layer in the magnesium alloy compared to an aluminum alloy. The oxide layer made below $73^{\circ}C$ by anodizing had no porous layer. The electrolyte used in this study is DOW 17 solution. The surface morphology of the magnesium oxide layer was investigated by a scanning electron microscope. The pores made by anodizing were sealed by water and aqueous nano-diamond powder respectively. The hardness and corrosion resistance of the magnesium alloy was increased by the anodizing and sealing treatment with nano-diamond powder.

AAO 나노기공을 형틀로 이용한 PMMA 나노패턴 형성 기술 (Synthesis of PMMA Plate with Nano-Sized Pattern on Anodized Aluminum Oxide Template)

  • 이병욱;이근우;이종하;이태성;홍진수;정재훈;김창교;이재홍
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 추계학술대회 논문집
    • /
    • pp.382-383
    • /
    • 2007
  • PMMA plate with nano-sized pattern was synthesized on anodized aluminum oxide template by bluk polymerization method. Anodized aluminum oxide was used as a template to synthesize the PMMA plate with nano-sized pattern. The polymerization of MMA was performed at $75-79^{\circ}C$. It is verified from SPM results that the nano-sized pattern on synthesized PMMA plate was well transferred from that of anodized aluminum oxide template.

  • PDF

Effects of process variables on aqueous-based AlOx insulators for high-performance solution-processed oxide thin-film transistors

  • Huh, Jae-Eun;Park, Jintaek;Lee, Junhee;Lee, Sung-Eun;Lee, Jinwon;Lim, Keon-Hee;Kim, Youn Sang
    • Journal of Industrial and Engineering Chemistry
    • /
    • 제68권
    • /
    • pp.117-123
    • /
    • 2018
  • Recently, aqueous method has attracted lots of attention because it enables the solution-processed metal oxide thin film with high electrical properties in low temperature fabrication condition to various flexible devices. Focusing the development of aqueous route, many researchers are only focused on metal oxide materials. However, for expansive application of the aqueous-based metal oxide films, the systematic study of performance change with process variables for the development of aqueous-based metal oxide insulator film is urgently required. Here, we propose importance of process variables to achieve high electrical-performance metal oxide insulator based on the aqueous method. We found that the significant process variables including precursor solution temperature and humidity during the spincoating process strongly affect chemical, physical, and electrical properties of $AlO_x$ insulators. Through the optimization of significant variables in process, an $AlO_x$ insulator with a leakage current value approximately $10^5$ times smaller and a breakdown voltage value approximately 2-3 times greater than un-optimized $AlO_x$ was realized. Finally, by introducing the optimized $AlO_x$ insulators to solutionprocessed $InO_x$ TFTs, we successfully achieved $InO_x/AlO_x$ TFTs with remarkably high average field-effect mobility of ${\sim}52cm^2V^{-1}\;s^{-1}$ and on/off current ratio of 106 at fabrication temperature of $250^{\circ}C$.

실리콘에 Local Anodic Oxidation으로 만든 산화물의 영향 (Influence of Oxide Fabricated by Local Anodic Oxidation in Silicon)

  • 정승우;변동욱;신명철;;구상모
    • 한국전기전자재료학회논문지
    • /
    • 제34권4호
    • /
    • pp.242-245
    • /
    • 2021
  • In this work, we fabricated oxide on an n-type silicon substrate through local anodic oxidation (LAO) using atomic force microscopy (AFM). The resulting oxide thickness was measured and its correlation with load force, scan speed and applied voltage was analyzed. The surface oxide layer was stripped using a buffered oxide etch. Ohmic contacts were created by applying silver paste on the silicon substrate back face. LAO was performed at approximately 70% humidity. The oxide thickness increased with increasing the load force, the voltage, and reducing the scan speed. We confirmed that LAO/AFM can be used to create both lateral and, to some extent, vertical shapes and patterns, as previously shown in the literature.