• Title/Summary/Keyword: Nano Gear

Search Result 14, Processing Time 0.031 seconds

Structural Analysis of Differential Gear System for Balancing Module Design (Balancing 모듈 설계를 위한 Differential Gear System의 구조해석에 관한 연구)

  • Jang, T.H.;Kim, D.J.;Moon, C.H;Lee, S.J.;Kim, T.G.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.6
    • /
    • pp.270-274
    • /
    • 2019
  • In this study, simulation structure analysis was performed for the differential gear system for passenger cars as a prerequisite for the design of the balancing module. The differential gear system was modeled by using CATIA and simulation structure analysis was performed using ANSYS software. The material of the modeled differential gear system uses the mechanical properties of S45C (Q&T). In the structural analysis of the differential gear, the areas where the maximum stress and the maximum strain occurred can be identified. The maximum stress and maximum strain occurred in the pitch circle of the bevel gear. In evaluating the safety factor, it was found that sufficient safety factor was secured. Based on the analysis results for the differential gear, it is expected that it will be a good reference if we design the balancing module device.

A Study on Tribological Characteristics of Sintered Fe-base Low Alloy Powder for Automobile Parts (자동차 부품용 Fe계 저합금 분말 소결품의 마찰마모 특성 연구)

  • Kim, Tae-Hyun;Kim, Sang-Youn;Kim, Tae-Gyu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.6
    • /
    • pp.139-144
    • /
    • 2012
  • In the automobile industry, the various efforts to lower their industrial cost and enhance fuel efficiency have been made through process improvement or weight saving of automobile parts. Gear is one of significant parts of transmission, which is made by cast iron or alloy steel. It is expensive due to complex processing, inferior materials and large machining allowance. In this study, alternative gear cars oil which is based on fluid applications materials is produced by reducing surface induction hardening and carburizing hardened in production. And then, wear characteristic and mechanical properties such as hardness of the sintered alloy which is used as a substitute for small machining allowance is investigated.

Evaluation Tool Life and Cutting Characteristics of Carbide Hob TiAlN Coating Surface Polishing Using Aero Lap Polishing Technology and Multi-con (Multi-con와 ALPT을 활용한 TiAlN코팅층 표면연마 초경호브의 절삭특성 및 공구수명 평가)

  • Cheon, Jong-Pil;Pyoun, Young-Sik
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.848-854
    • /
    • 2012
  • SCM420 steel cutting gear to improve the durability is quenched. When quenching, increases surface hardness, a change of the physical properties and machinability or fall. This study, using a solid carbide hobs skiving hobbing gear cutting finishing. And cutting tool solid carbide TiAlN coating hove when TiAlN coating on the surface of multi-con polishing hob conducted aero lap nano polishing for each cutting. Experimental results conducted aero lap nano coating on the surface polishing tool machinability was excellent. And aero lap nano polishing tool results were reduced 2.5 times the tool wear compared to TiAlN coated tools. Excellent results were 1.42 times longer tool life.

Fabrication of Micro Spur Gear in Nano Grained Al Alloy

  • Lee, Won-Sik;Jang, Jin-Man;Ko, Se-Hyun
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.778-779
    • /
    • 2006
  • Manufacturing technologies of micro parts were studied in nano grained Al-1.5mass%Mg alloy. During compressive test at $300^{\circ}C$, the Al alloy showed stain softening phenomenon by grain boundary sliding regardless of strain rate. Micro spur gear with ten teeth (height of $200{\mu}m$ and pitch of $250{\mu}m$) was fabricated with sound shape by micro forging. During micro forging, increase of applied stress induced by friction between material and die surface was effectively compensated by decrease of stress by strain softening behavior and as a result, flow stress increased only about 50 MPa more than that in compressive test

  • PDF

Mechanical Properties of Epoxy Alumina Multi-Composites (에폭시 알루미나 멀티-콤포지트의 기계적 특성연구)

  • Park, Jae-Jun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.12
    • /
    • pp.796-802
    • /
    • 2016
  • In order to develop an electrical insulation material for gas GIS (insulation switch gear) spacer, 4 types of epoxy/micro-alumina (40, 50, 60, 70 wt%) composites and 9 types of epoxy/nano-alumina (1, 3, 5 g)/micro-alumina (40, 50, 60, 70 wt%) composites were prepared and tensile test was carried out. In here, nano-alumina was previously surface-treated with GDE (glycerol diglycidyl ether). As micro-alumina and GDE-treated nano-alumina contents increased, tensile strength increased and the highest value was shown in the system with 3 g GDE-treated nano-alumina.

Coatings Properties and Efficiency Performance of Cr-DLC Films Deposited by Hybrid Linear Ion Source for Hydraulic Gear Pump (하이브리드 선형이온원에 의한 유압 기어펌프용 Cr-DLC코팅막의 특성과 효율성능)

  • Cha, Sun-Yong;Kim, Wang-Ryeol;Park, Min-Suk;Kwon, Se-Hun;Chung, Won-Sub;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.17 no.6
    • /
    • pp.456-463
    • /
    • 2010
  • This paper describes the results of the application of Cr-Diamond-like carbon (DLC) films for efficiency improvement through surface modification of spur gear parts in the hydraulic gear pump. Cr-DLC films were successfully deposited on SCM 415 substrates by a hybrid coating process using linear ion source (LIS) and magnetron sputtering method. The characteristics of the films were systematically investigated using FE-SEM, nano-indentation, sliding tester and AFM instrument. The microstructure of Cr-DLC films turned into the dense and fine grains with relatively preferred orientation. The thickness formed in our Cr buffer layer and DLC coating layer were obtained the 487 nm and $1.14\;{\mu}m$. The average friction coefficient of Cr-DLC films considerably decreased to 0.15 for 0.50 of uncoated SCM415 material. The hardness and surface roughness of Cr-DLC films were measured 20 GPa and 10.76 nm, respectively. And then, efficiency tests were performed on the hydraulic gear pump to investigate the efficiency performance of the Cr-DLC coated spur gear. The experimental results show that the volumetric and mechanical efficiency of hydraulic gear pump using the Cr-DLC spur gear were improved up to 2~5% and better efficiency improvement could be attributed to its excellent microstructure, higher hardness, and lower friction coefficient. This conclusion proves the feasibility in the efficiency improvement of hydraulic gear pump for industrial applications.

Fabrication of Nano Composites Using Hybrid Rapid Prototyping (하이브리드 쾌속 조형을 이용한 나노 복합재의 조형)

  • Chu W.S.;Kim S.G.;Ahn S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.757-760
    • /
    • 2005
  • The technology of rapid prototyping (RP) is used for design verification, function test and fabrication of prototype. The current issues in RP are improvement in accuracy and application of various materials. In this paper, a hybrid rapid prototyping system is introduced which can fabricate nano composites using various materials. This hybrid system adopts RP and machining process, so material deposition and removal is performed at the same time in a single station. As examples, micro gears and a composite scaffold were fabricated using photo cured polymer with nano powders such as carbon black and hydroxyapatite. From the micro gear samples the hybrid RP technology showed higher precision than those made by casting or deposition process.

  • PDF

Design of Precision Motor Dynamometer System using MR Fluid (MR Fluid를 이용한 정밀 모터 동력계 실험 장치 설계)

  • Kim J.K.;Roh C.Y.;Roh M.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.313-317
    • /
    • 2005
  • Precision motor dynamometer is requiring for nano positioning control performance recently. Particularly, linear motor is using rapidly and the dynamometer needs is increasing. In this study, a precision control dynamometer is designed using MR (Magnetic Rheological) damper. The ultra precision motor system including the driver and controller is tested using the MR damper dynamometer. This dynamometer is able to measure torque for rotary motor or traction force with linear positioning accuracy for linear motor system.

  • PDF