• Title/Summary/Keyword: Nano Cosmetic

Search Result 93, Processing Time 0.034 seconds

The coating of vitamin C on the surface of polymethylmethacrylate microsphere (Polymethylmethacrylate 입자에 표면에 비타민 C의 코팅)

  • Kim, Kyung-Hee;Choi, Seong-Ho
    • Analytical Science and Technology
    • /
    • v.19 no.6
    • /
    • pp.468-472
    • /
    • 2006
  • This paper was described that the preparation of polymetylmethacrylate (PMMA) microsphere and coating of vitamin C onto surface of the prepared PMMA microsphere for application of cosmetic materials. The PMMA microsphere with various sizes can be obtained by change of reaction condition such as reaction temperature and reaction time. The coating of vitamin C on the surface of PMMA microsphere by using cyclodextrin as binder can be achieved to 30 wt-% in water/ethanol mixture. The vitamin C coated with cyclodextrin was stabilized during 56 days at $40^{\circ}C$. The color of the coated Vitamin C was changed from white to dark yellow after 14 days at $40^{\circ}C$. The vitamin C coated with cyclodextrin on the surface of PMMA microsphere can be sufficiently used for cosmetic materials.

Nano Capsulization of Ceramide and the Efficacy of Atopy Skin (나노세라마이드의 캡슐화와 아토피 피부의 치료)

  • Zhoh Choon-Koo;Kim In-Young;Lee Hee-Seob
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.3 s.47
    • /
    • pp.419-426
    • /
    • 2004
  • The nano-ceramide capsulation is a technique that capsulates ceramide III and tocopheryl linoleate at the mono-vesicle to act on the horny layer in skin. In this technique, $0.5{\~}5.0\;wt\%$ of hydrogenated lecithin and $0.01{\~}2.00\;wt\%$ of lysolecithin are used as the membrane-strengthen agents of the mono-vesicle and $5.0{\~}10.0\;wt\%$ of propylene glycol and $5.0{\~}10.0\;wt\%$ of ethyl alcohol are used as solvents. Active ingredients such ceramide III and tocopheryl linoleate are utilized to enhance the moisturizing efficacy and treat atopy skin. These materials do not contain synthetic emulsifiers. The optimal conditions or nano-ceramide capsulation are such that particles pass Microfludizdizer 3 times at 1,000 bar and $60{\~}70^{\circ}C$ and pH of nano capsules is $5.8{\pm}0.5.$ The average size of particles is $63.1{\pm}7.34\;nm$ showing lucid state like water by the laser light scattering. A zeta potential value is $-55.1\pm0.84\;mV.$ Through clinical tests, the moisturizing effect (in-vivo, n=8, p-value<0.05) showed $21.15\%$ of improvement comparison to comparison-samples and $36.31\%$ of improvement compared to the state before treatment. Moreover, the effectiveness of atopy skin showed positive reaction from 10 volunteers.

Stability of Nano-emulsions prepared upon Change of Composition (조성변화에 따라 제조된 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Eun Hee;Jeon, Bong-Ju;Cha, Young-Kweon;Park, Seon-Ki
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.1
    • /
    • pp.55-63
    • /
    • 2013
  • Applications of nano-emulsion for cosmetics as a means of promoting dermal absorption have been the subject of interest. In this study, the stability of nano-emulsions prepared by low-energy emulsification method and varying the composition of raw materials was investigated. By measuring the particle size of the nano-emulsion against time, the stability of nano-emulsions prepared by adding polyol to water phase was increased significantly compared with the nano-emulsions prepared by adding polyol to ethanol phase. The speed of adding ethanol phase to water phase did not have a significant impact on the particle size and stability. Depending on the type of oil, stability was not affected. However, there would be a correlation between the initial size of the nano-emulsion droplets and the molecular weight and polarity of the oil. Stability and the initial particle size according to the type of polyols showed a similar trend except 1,2 hexanediol. The initial droplet size was affected by the concentration of surfactant and oil. However, the initial droplet size did not change against time. Concentration of ethanol was observed to have a significant impact on the initial particle size and stability.

Study of Nano-emulsion Formation by Different Dilution Method (희석 방법에 따른 나노에멀젼 형성 연구)

  • Cho, Wan-Goo;Han, Sang-Gil
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.38 no.3
    • /
    • pp.201-207
    • /
    • 2012
  • The influence of different dilution procedures on the properties of oil-in-water (O/W) nano-emulsions obtained by dilution of oil-in-ethanol (O/E) microemulsions with water has been studied. The system water/ethanol/nonionic surfactant/silicone oil with ethanol was chosen as model system. The dilution procedures consisted of adding water (or microemulsion) stepwise. By mixing O/E microemulsions into water, nano-emulsions with droplet diameters of 30 nm were obtained. In contrast, by mixing water into O/E microemulsion, emulsions with diameter of 400 nm were obtained The dilution methods were shown to be a key factor determining the properties of the emulsions. There were no change in diameters of nanoemulsion droplets against time, however sizes of droplets in the emulsion with larger droplets were increased with time and the mechanism of unstability was thought to be Ostwald ripening.

The Study for Stability of Useful Glycyrrhiza uralensis (Licorice Root) Using Nanosolve and PMMA (Nanosolve와 PMMA를 이용한 유용성감초산의 안정화에 대한 연구)

  • Ji, Hong-Geun;Kim, Ju-Duck;Kim, Jeong-Dong;Choi, Jung-Sik
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.2
    • /
    • pp.207-210
    • /
    • 2004
  • Glycyrrhiza uralensis (licorice root) is very useful medicinal herb because of strong anti-inflammatory and anti-wrinkle effect. Therefore, it is widely used in functional cosmetics. However, it is insoluble and easily decomposed by light, heat, oxygen, etc. In this study, we first prepared NanoSolve-Licorice (30-50nm) using Glycyrrhiza uralensis and propylene glycol! hydrogenated lecithin/caprylic/capric triglyceride/glycerin/water system with microfluidizer. And then, NanoSolve-Licorice and porous PMMA are dispersed in ethanol. Finally, we could get a stabilized system with high-pressure homogenizer (1,000 Bar, 3 passes). According to HPLC measurement for glabridin content, our system is more stable compared with general liposome ones. Capsulated licorice has an enhanced anti-inflammatory effect on account of excellent skin penetration. We also evaluated our final product through image analyzer, particle size analyzer, FF-TEM and chromameter.

Study for Organic(Bio)-Inorganic Nano-Hybrid OMC

  • Lee, Jung-Eun;Ji, Hong-Geun;Park, Yoon-Chang;Lee, Kyoung-Chul;Yoo, Eun-Ah
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.178-191
    • /
    • 2003
  • OMC is essentialiy necessary compound in sun goods as organic UV protecting products. But the skin-trouble problem is raising because of skin penetration of OMC. In this study, non-capsulated pure OMC was compared with Organic-Inorganic-Nano-hybrid OMC for skin penetration force and SPF degree. Organic- Inorganic Nano-Hybrid OMC is OMC trapped in the pore of the mesoporous silica synthesized by the sol-gel method after OMC is nanoemulsified in the system of the hydrogenated Lecithin/ Ethanol/caprylic/capric triglyceride/OMC/water. OMC- nano- emulsion was obtained by a microfluidizing process at 1000bar and then micelle size in the nanoemulsion solution is 100-200nm range. Mesoporous silica nano-hybrid OMC was prepared by the process; surfactant was added in dissolved OMC-Nanoemulsion, then the rod Micelle was formed. OMC-nanoemulsion was capsulated in this rod Micelle and then silica precursor was added in the OMC-nanoemulsion solution. Through the hydrolysis reaction of the silica precursor, mesoporous silica concluding OMC-Nanocapsulation was obtained. The nano-hybrid surface of this OMC-Nanoemulsion-Inorganic system was treated with polyalkyl-silane compound. OMC-Mesoporous silica Nano-hybrids coated with polyalkyl-silane compound show the higher sun protecting factor (SPF Analyzer: INDEX 10-15) than pure OMC and could reduce a skin penetration of OMC. The physico-chemical properties of these nano-hybrids measured on the SPF index, partical size, strcture, specific surface area, pore size, morphology, UV absorption, rate of the OMC dissolution using SPF Analyzer, Laser light scattering system, XRD, BET, SEM, chroma Meter, HPLC, Image analyzer, microfluidizer, UV/VIS. spectrometer.

  • PDF

Cosmetic Emulsions: Stabilization by Particles (화장품 에멀젼: 입자에 의한 안정화)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • The preparation and properties of emulsions stabilized by the adsorption of solid particles at the oil-water interface are reviewed. Comparison is made with the behaviour of surfactant-stabilized emulsions. Many of the properties of Pickering emulsions are attributed to the large free energy of adsorption for particles. The main differences is due to the irreversible adsorption of particles to the interface. Phase inversion from w/o (water-in-oil) to o/w (oil-in-water) can be brought by increasing the volume fraction of water. Hydrophilic particles tend to form o/w emulsion whereas hydrophobic particles form w/o emulsion. The contact angle at the oil-water interface is main parameter to decide the emulsion type. The aspects of stability of Pickering emulsions are in contrast to general emulsions in some points. The possibility using Pickering emulsions for cosmetics is also proposed.

고분해능 TEM을 이용한 나노소재의 특성분석

  • 서원선;이영호;이명현
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.2
    • /
    • pp.58-72
    • /
    • 2002
  • The high resolution transmission electron microscope(HRTEM) is one of the most powerful methods fer investigating internal structures of various materials on an atomic scale. In fact, HRTEM images are becoming much more common in scientific papers, and are making valuable contributions to development of industrial products. With rapid improvement of current HRTEMS, their maximum resolution reaches almost 0.1 nm. In this paper we describe the fundamental formulation of the imaging process of HRTEM and their practical application f3r nano materials.

Polymeric Nano-materials: Applications & Research Trends (고분자 나노 소재의 응용 및 연구 현황)

  • 박영준
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.2
    • /
    • pp.55-57
    • /
    • 2002
  • The fabrication, characterization and manipulation of nanosystems brings together physics, chemistry, materials science and biology in an unprecedented way, Phenomena occurring in such systems are fundamental to the workings of electronic devices, but also to living organisms. The ability to fabricate nanostructures is essential in the further development of functional devices that incorporate nanoscale features. Even more essential is the ability to introduce a wide range of chemical and materials flexibility into these structures to build up more complex nanostructures that can ultimately rival biological nanosystems. In this respect, polymers are potentially ideal nanoscale building blocks because of their length scale, well-defined architecture, controlled synthesis, ease of processing and wide range of chemical functionality that can be incorporated. In this presentation, we will look at a number of promising polymer-based nanofabrication strategies that have been developed recently, with an emphasis on those techniques that incorporate nanostructured polymers into devices and that exploit intrinsic polymer properties.

Comparison of Antimicrobial and Antioxidant Activities by Different Extraction Methods in Korean Bamboos (한국산 대나무의 추출방법에 따른 항균 및 항산화 특성)

  • Choi, Hwan-Seok;Kim, Gwui-Cheol;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.27 no.2
    • /
    • pp.131-135
    • /
    • 2012
  • To develop potential cosmetic ingredients with antimicrobial and antioxidant activities of 4 Korean bamboo species (P. bambusoides, P. nigra var. henonis, P. pubescens and Sasa coreana) using three different extraction methods-water, ethanol and supercritical fluid extraction. Antimicrobial activities and DPPH assay have been examined. Among the antimicrobial activities against two test strains, Escherichia coli and Staphylococcus aureus, ethanol extracts of 3 bamboo trees, P. bambusoides, P. nigra var. henonis, and P. pubescens, showed stronger than those of supercritical extracts. However, 4 bamboo supercritical extracts showed dose-dependent increase in antioxidant activity by DPPH assay. These results suggest that water fraction of bamboo extracts may be useful for the cosmetic ingredient with low cytotoxicity.