• 제목/요약/키워드: Nano Cosmetic

Search Result 93, Processing Time 0.024 seconds

Study on the Stability of Biotin-containing Nano-liposome (바이오틴 함유 나노리포좀의 안정성에 관한 연구)

  • Yang, Seong Jun;Kim, Tae Yang;Lee, Chun Mong;Lee, Kwang Sik;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.133-145
    • /
    • 2020
  • This study utilized nano-liposomes for the purpose of stabilizing and increasing the solubility of biotin, a water-soluble active material with low solubility. The particle size, zeta potential, and polydispersity index were confirmed with a nano zetasizer. It was possible to manufacture nano liposomes at 100 to 250 nm of particle size and -80 to -30 mV of zeta potential. Dialysis membrane method (DMM) was used to measure the capsulation efficiency of biotin in biotin nano-liposomes, and results showed that pH increased biotin nano-liposomes had higher capsulation efficiency than normal biotin nano-liposome. Through this experiment, it was confirmed that the pH has a great influence on the stability of biotin nano-liposomes. In vitro franz diffusion cell method was used to measure in vitro skin absorption rate of biotin nano-liposomes. The shape of the formulation and biotin solubility in nano-liposome was observed by cryogenic transmission electron microscopy (cryo-TEM). Through this study, we confirmed that biotin, which is introduced as closely related to hair health, can be incorporated into a nano-liposome drug delivery system, to make biotin nano-liposome with improved solubility and precipitation problems.

Nano-emulsion Containing Parthenocissus tricuspidata Stem Extracts for Enhanced Skin Permeation and the Antibacterial Activity of the Extracts (피부 흡수 증진을 위한 담쟁이덩굴 줄기 추출물 함유 나노에멀젼 및 이의 항균활성 연구)

  • Jo, Na Rae;Park, Min A;Jeon, So Ha;Park, Soo Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.3
    • /
    • pp.320-326
    • /
    • 2013
  • In a previous study, we investigated the antioxidative and cellular protective effects of Parthenocissus tricuspidata stem extracts. In this study, we prepared nano-emulsion containing P. tricuspidata stem extract to improve skin permeation. The particle size of the nano-emulsion using the microfluidizer was 302 nm. Its loading efficiency was over 86%. The size distribution of the nano-emulsion took a monodispersed form and the nano-emulsion was more stable than typical emulsion without using microfluidizer during a 2 week period. In vitro skin permeation study of nano-emulsion containing P. tricuspidata stem extracts was carried out using Franz diffusion cell. The 1,3-butylene glycol used as a control group had 32.59% skin permeation efficiency. The skin permeation efficiency of the nano-emulsion was 42.47%. Also, we observed the antibacterial activity of the ethyl acetate fraction on skin flora for prospective applications as a natural antimicrobial. The ethyl acetate fraction had antibacterial activities higher than methyl paraben on Staphylococcus aureus, and Bacillus subtilis. These results indicate that nano-emulsion containing P. tricuspidata stem extracts could possess valued applications in cosmetic formulations for improving skin permeation. Also, based on the antibacterial activities on skin flora, antioxidative and cellular protective effects shown in our previous study, we suggest that P. tricuspidata stem extracts could be used as functional cosmetic materials.

Study of complete transparent nano-emulsions which contain oils

  • Kwak, Jong-Im;Kim, Ju-Duck;J, i-Hong-Geun
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.258-267
    • /
    • 2003
  • Recently inside nano liposome particles or nano-emulsions which contain tough-melting physiology activity materials or the coefficient of low organism utilization promote the coefficient of organism utilization, so this part has been studied a lot because they can absorb selectly cosmetics, specially physiology activity materials, into the skin. Also, in particle size, cells interstitial lipid interval are 30~50nm, so nano-emulsions that the size is similar to 30~50 nm are made to study for absorbing quickly into the skin. And transparent skin which contains oils in common skin lotion dosage form has become the center of public interest. The used nano-emulsions in this study were unsaturated lecithin/co-surfactant! ethanol/ oil / water. And polysorbate 20/ polysorbate 80/ Dicetyl phosphate/hydrogenated .caster oil/ isoceteth-20/SLS were used in co-surfactant. The used oils were cyclomethicone and caprylic/capric triglyceride. The manufacturing process was that microfluidizer was fixed in 1000bar and transit times were changed from 1 to 10 times. From transparency and particle size, the transparency sequence was SLS> polysorbate 20= polysorbate 80> isoceteth-20> dicetyl phosphate >hydrogenated caster oil and the particle size was small. Specially cyclomethicone nano-emulsions, when we made unsaturated lecithin /SLS /ethanol/water/cyclomethicone, cyclomethicone 5% was good for transparency. And 20% of this was used for making transparent skin toner in common skin dosage form.

  • PDF

Nano-emulsion Formed with Phospholipid-Nonionic Surfactant Mixtures and its Stability (인지질-비이온계면활성제 혼합물로 형성된 나노에멀젼과 이의 안정성)

  • Cho, Wan Goo;Kim, Eun Hee
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.40 no.3
    • /
    • pp.221-226
    • /
    • 2014
  • IIn this study, O/W type nano-emulsions were prepared by phospholipid-nonionic surfactant mixtures and octyldodecylmyristate using the phase transition low-energy emulsification method. The nano-emulsions were formed only in the very narrow area of the concentration of mixed surfactant and oil molar ratio of around 1 : 1. The particle size of the emulsions was decreased as adding the aqueous phase into the emulsions after phase inversion point unlike the emulsions formed only with nonionic surfactant. Nano-emulsion was stable at room temperature for more than a month. Thus, the nano-emulsions containing phospholipids can be widely used as a cosmetic formulations.

The Manufacturing Mechanism of Nano-some and Method of Capsulation of Kojic Acid and Kojic Dipalmitate with Hydrogenated Lecithin and Co-emulsifiers (Hydrogenated Lecithin 과 Co-emulsifier를 사용한 Nano-some의 제조 메커니즘과 Kojic Acid 및 Kojic Dipalmitate의 캡슐화 방법)

  • Kim, In-Young;Jae, Koo-Hwan;Lee, Joo-Dong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.248-256
    • /
    • 2000
  • We investigated the property of formation of mono-vesicle(designated nano-some) with using of the combined co-emulsifiers and phospholipid. Nano-some was prepared with hydrogenated lecithin(HL) and diethanolamine cetyl phosphate(DEA-CP) by swelling reaction. Kojic acid and kojic dipalmitate could be made stabilization by nano-some system using microfluidizer(MF). Nano-some has a good affinity to skin by means of this system. The composition was compounded by 2% of hydrogenated lecithin (phosphatidyl choline contained with 75%, 0.5% of DEA-CP and 0.5% of diglyceryl dioleate (DGDO). To make nano-some, several conditions of MF have to be considered as follows. The optimum pH was 6.0. The pressure was 10,000psi and passage temperature was at $306^{\circ}C$. The nano-some base was passed to homogenize continually 3 times through MF. The Particle size distributions of the vesicles were with in $57{\sim}75.7nm$(mean 66nm) by measuring the Zetasizer-3000. Zeta potential of vesicles with 3 times passage through MF was -24.8mV. Formations for nano-some vesicle certificated photograph by scanning electric magnification (SEM). Stability of nano-some was very good for 6months. The turbidity was very good transparency compared nano-some with liposome. It was formed the mono vesicle in the opposite direction to be formed the multi-lamellar vesicle of liposome.

A Study on Nano-emulsion for Enhanced Transdermal Delivery of Hippophae rhamnoides Leaf Extract (비타민나무 잎 추출물의 피부 흡수 증진을 위한 나노에멀젼 연구)

  • Chae, Kyo Young;Kwon, Soon Sik;Park, Soo Nam
    • Applied Chemistry for Engineering
    • /
    • v.24 no.3
    • /
    • pp.260-265
    • /
    • 2013
  • In this study, nano-emulsions containing 0.01, 0.03, 0.05, and 0.10% ethyl acetate fraction of Hippophae rhamnoides (H. rhamnoides) leaf extracts were prepared. The particle size, particle size distribution and skin permeability of the nano-emulsions were evaluated for five weeks. Nano-emulsion was prepared by the sequential use of homogenizer and microfluidizer. Nano-emulsion containing the ethyl acetate fraction exhibited a monodispersed form. Nano-emulsion containing 0.03% ethyl acetate fraction was the most stable for five weeks. The in vitro skin permeation study of nano-emulsion containing 0.03% ethyl acetate fraction was carried out using Franz diffusion cell. The nano-emulsion showed a better skin permeability than that of O/W emulsion. These results indicate that the nano-emulsion containing the ethyl acetate fraction of H. rhamnoides leaf extract showed a remarkable stability and skin permeability than that of O/W emulsion.

Cosmetic Application of Bis-ethylhexyloxyphenolmethoxyphenyltriazine (BEMT) Loaded Solid Lipid Nano-particle (SLN) (비스에칠헥실옥시페놀메톡시페닐트리아진(BEMT)을 봉입한 고형지질나노입자(Solid Lipid Nano-particle)의 화장품 응용)

  • Lee, Geun-Soo;Lee, Dong-Whan;Pyo, Hyeung-Bae;Choi, Tae-Boo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.4
    • /
    • pp.219-225
    • /
    • 2007
  • Bis-ethylhexyloxyphenolmethoxyphenyltrizine (BEMT) is one of the most widely used chemical UVA+UVB double absorbers in sunscreen products. But topical application of BEMT is restricted due to its defects in product. The purpose of this study is to adopt the sunscreen product of solid lipid nano-particles containing BEMT (BEMT-SLN). The particle diameters, the encapsulation efficiencies and the crystallization index (C.I.) are about 330nm, 93.3 % and the 4.3 %. As a result, in vitro penetration and release of BEMT were generally higher in O/W emulsion than the SLN formulation. However in vivo study, it was shown that the rate of release could be decreased by 80 % in the SLN formulation. The sun protection factor (SPF) of the SLN formulation increased by 100 % in the in vitro UV protection test. Therefore, SLN formulation potentiated the UV-blocking power of BEMT. This study suggest that SLN can be used for the encapsulation of BEMT.

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

Stability of Nano-Emulsions Prepared by Solubilization Method (가용화법에 의해 제조된 나노에멀젼의 안정성)

  • Lee, Dong-Reol;Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.36 no.4
    • /
    • pp.265-269
    • /
    • 2010
  • In this study, we varied emulsifiers and oils for obtaining nano-emulsions with low viscosity using solubilization method. We obtained the stable nano-emulsions with 100 nm droplet size composed with hexyl laurate, ceteareth-20, PEG-40 hydrogenated caster oil, glyceryl stearate, and stearic acid. This nano-emulsion was stable against time. The stability of nano-emulsions was measured through the change of particle size. The cooling process was an important factor for obtaining stable emulsions by solubilization method. Stability of nano-emulions was maximum only when cooled rapidly.

Ostwald Ripening in Hydrogenated Lecithin-stabilized Oil-in-Water Nano-emulsions (수첨 레시틴으로 안정화된 오일/물 나노에멀젼에서의 Ostwald Ripening)

  • Cho, Wan-Goo;Yang, Hee-Jung;Park, Soo-Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.34 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • Formation of oil-in-water nano-emulsions has been studied in oil/hydrogenated lecithin/water systems by two shear different instrument. The influence of surfactant concentration on nano-emulsion droplet size and stability has been studied. Droplet size was determined by dynamic light scattering, and nano-emulsion stability was evaluated by measuring the variation of droplet size as a function of time. The results obtained showed that the breakdown process of nano-emulsions studied could be attributed to Ostwald ripening. An increase of nano-emulsion instability with increase in surfactant concentration was found in the droplet size in the range of 100~200nm, however, an decrease of instability was found in the droplet size in the range of 300~400nm.