• Title/Summary/Keyword: Nano Control

Search Result 1,028, Processing Time 0.036 seconds

Nano Catalysts for Proton Exchange Membrane Fuel Cells

  • Kim, Su-Gil;Hwang, Seung-Jun;Im, Ji-Eun;Yu, Seong-Jong;Lee, Seung-Cheol;Im, Tae-Hun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.71.1-71.1
    • /
    • 2012
  • Proton Exchange Membrane Fuel Cells (PEMFCs) have been of great interest particularly in the automobile industries because of their high energy density and low pollutant emission. However, some of the issues such as, the necessarily high contents of Pt catalysts and their slow kinetics of cathode oxygen reduction reaction remain as obstacles in the commercialization of the PEMFC. In this presentation, after brief explanation on basic principles of PEMFC and its application to FC vehicles, recent researches to improve the activity and durability of Pt-based nano catalysts toward oxygen reduction will be introduced. It covers size and shape control of Pt nano particle, binary and ternary Pt-M alloys, novel core-shell nano structures of Pt, and a little bit about non-Pt catalysts. Strategies and methodologies for design and synthesis of novel catalysts will also be included.

  • PDF

Evaluation of Cu nano-colloid prepared by electrical wire explosion in liquid phase (액중 전기선폭발법으로 제조된 구리 나노콜로이드의 특성 평가)

  • Yoon, Jae-Cheol;Yang, Sang Sun;Yu, Ji-Hun
    • Particle and aerosol research
    • /
    • v.6 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Cu nano-colloid was prepared by wire electric explosion process under de-mineralized water and anhydrous ethanol. To control the properties of Cu nano-colloid, experimental conditions such as diameter of Cu wire and applied voltage were changed. The optimal Cu nano-colloid was prepared when the 0.1mm diameter of Cu wire with the applied voltage of 2000 V was used. The shape of Cu particles in colloid was spherical and the XRD result revealed that the phase of Cu particles was cubic phase. About 20nm Cu nanoparticles with high crystallinity were successfully prepared using wire explosion process under anhydrous ethanol and they showed more than 100 hours dispersion stability.

Fabrication of nano-rod on AAO template (AAO에 의한 나노로드 제작)

  • Hamrokulov, B.;Park, B.H.;Kim, In-Soo
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.482-484
    • /
    • 2008
  • Anodic aluminum oxide (AAO) which prepared with two-step anodizing method (with dissimilar solutions) was used as a template to fabricate highly ordered, free standing metal nano-rods. AAO nano-template technique can realize self-organized hexagonal pore structure with nanometer dimension size, it's easy to control pore diameter, length and density by varying anodizing conditions. Ni and Ni/Fe/Cu multi-metal layer nanorods were electrochemically deposited into AAO nano-template by AC voltage in simple sulfate solutions.. The properties of samples are tested by X-ray diffraction (XRD), field emission microscopy (FE-SEM).

  • PDF

Inkjet patterning of Aqueous Silver Nano Sol on Interface-controlled ITO Glass

  • Ryu, Beyong-Hwan;Choi, Young-Min;Kong, Ki-Jeong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.1552-1555
    • /
    • 2005
  • We have studied the inkjet patterning of synthesized aqueous silver nano-sol on interface-controlled ITO glass substrate. Furthermore, we designed the conductive ink for direct inkjet patterning on bare ITO glass substrate. The first, the highly concentrated polymeric dispersant-assisted silver nano sol was prepared by variation of molecular weight and control of initial nucleation and growth of silver nanoparticles. The high concentration of batch-synthesized silver nano sol was possible to 40 wt%. At the same time the particle size of silver nanoparticles was below $10{\sim}20nm$. The second, the synthesized silver nano sol was inkjet - patterned on ITO glass substrate. The connectivity and width of fine line depended largely on the wettability of silver nano sol on ITO glass substrate, which was controlled by surfactant. The relationship was understood by wetting angle. The fine line of silver electrode as fine as $50{\sim}100\;{\mu}m$ was successfully formed on ITO glass substrate. The last, the direct inkjet-patternable silver nano sol on bare ITO glass substrate was designed also.

  • PDF