• Title/Summary/Keyword: Nano Control

Search Result 1,018, Processing Time 0.032 seconds

Nano Wear Behavior of a-C Films with Variation of Surface Roughness (표면거칠기의 변화에 따른 a-C 박막의 나노마멸 거동)

  • 채영훈;장영준;나종주;김석삼
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nano-wear behavior of amorphous carbon films was studied by Atomic Force Microscopy. The a-C films are deposited on Si(100) substrate by DC magnetron sputtering method. The influences of different surface roughness on the nano-wear are investigated. Nano-wear tests were carried out using a very sharp diamond coated tip. Its spring constant was 1.6 N/m and radius of curvature was 110 nm. Normal force used in the wear tests ranged 0 to 400 nN. It was found that surface depression occurred during scratching because of plastic deformation and abrasive wear (cutting St ploughing). Wear depth increased linearly with normal force. Changing the surface roughness variables according to the bias pulse control, the less surface roughness decreased the wear depth. The thickness did not affect the wear resistance.

The Length Control of Carbon Nanotube using Electrochemical Etching (전해에칭을 이용한 탄소나노튜브의 길이 제어)

  • 이준석;권순근;곽윤근;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.167-171
    • /
    • 2004
  • In this paper, we proposed a new method to control the length of carbon nanotube using electrochemical etching. We made a nano probe that was composed of the tungsten tip and multi-wall carbon nanotube. The nano probe was placed on the nano stage and the carbon nanotube on the nano probe was etched in the electrolyte solution with the applied voltage. The overall procedures were done under optical microscope and can be monitored. We can obtain a nano probe with proper length through this procedure.

A Study on the Autonomous Navigation of Rovers for Mars Surface Exploration

  • Kim, Han-Dol;Kim, Byung-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.38.3-38
    • /
    • 2001
  • In the planetary surface exploration , micro-rovers or nano-rovers are very attractive choices for a surface exploration system providing mobility functions and other features required in the surface probe missions at small mass and relatively small cost. This paper surveys and summarizes the requirements for Mars exploration rovers in micro or nano scale and outlines the control concepts for navigation including the obstacle/hazard avoidance and the path planning. In this context, autonomous reaction capabilities are the key elements to control design in conjunction with the remote control schemes to deal with the significant signal propagation delays. Other navigation and control aspects such as the instrument fine positioning and the flip-over of the rovers are also briefly introduced. The current technical limitations of the micro- and nano-rovers are summarized.

  • PDF

Understanding and Application of Stoffenmanager Nano Tool into Synthesis and Packing Process of Nanomaterials (Stoffenmanager nano 컨트롤 밴딩 도구 이해와 나노물질 합성 및 포장 공정 적용 연구)

  • Lee, Naroo;Ahn, Jungho
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.25 no.1
    • /
    • pp.95-103
    • /
    • 2015
  • Objectives: This study was conducted in order to better understand the conceptual model and Stoffenmanager nano module and apply it to the synthesis and packing processes of nanomaterials. Methods: Site visits were conducted to five nanomaterial production processes. Product and exposure variables were investigated in these workplaces. Hazard banding and exposure classification of the synthesis and packing processes of nanomaterials were conducted using documents and the website of Stoffenmanager Nano. Results: The five sites featured different products, packing tasks, ventilation and local exhaust, and others. The hazards for nano-nickel and copper were classified as E. The hazards for both fumed silica and indium tin oxide were classified as D. The hazard for spherical silica was classified as C. The exposure classes in the synthesis process of nanomaterials ranged from 2 through 4. The exposure classes in the packing process of nanomaterials ranged from 1 through 4. Conclusions: Application of Stoffenmanager nano to the synthesis and packing processes of nanomaterials helped to better understand the control level of the work environment and to suggest appropriate actions. The comparison of each process showed the effect of the production process and handling of solids and ventilation on exposure class.

Fabrication of Nanometer-sized Pattern on PMMA Plate Using AAO Membrane As a Template for Nano Imprint Lithography (AAO 나노기공을 나노 임프린트 리소그래피의 형틀로 이용한 PMMA 나노패턴 형성 기술)

  • Lee, Byoung-Wook;Hong, Chin-Soo;Kim, Chang-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.5
    • /
    • pp.420-425
    • /
    • 2008
  • PMMA light guiding plate with nano-sized pattern was fabricated using anodized aluminum oxide membrane as a template for nano imprint lithography. Nano-sized pore arrays were prepared by the self-organization processes of the anodic oxidation using the aluminum plate with 99.999% purity. Since the aluminum plate has a rough surface, the aluminum plate with thickness of 1mm was anodized after the pre-treatments of chemical polishing, and electrochemical polishing. The surface morphology of the alumina obtained by the first anodization process was controlled by the concentration of electrochemical solution during the first anodization. The surface morphology of the alumina was also changed according to temperature of the solution during chemical polishing performed after first anodization. The pore widening process was employed for obtaining the one-channel with flat surface and height of the channel because the pores of the alumina membrane prepared by the fixed voltage method shows the structure of two-channel with rough surface. It is shown from SPM results that the nano-sized pattern on PMMA light guiding plate fabricated by nano imprint lithography method was well transferred from that of anodized aluminum oxide template.

Viewing angle controllable in-plane switching liquid crystal display using one panel

  • Kim, Jin-Ho;Lim, Young-Jin;Her, Jung-Hwa;Srivastava, Anoop Kumar;Park, Kyoung-Ho;Lee, Joun-Ho;Kim, Byeong-Koo;Lee, Seung-Hee
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.629-632
    • /
    • 2009
  • We have proposed a novel viewing angle controllable display of in-plane switching (IPS) mode with single panel. One pixel of this device is divided to two regions, in which main pixel shows image and sub pixel for viewing angle control. In initial state, the liquid crystal of sub pixel is homogeneous aligned on substrate for wide viewing angle mode. On the other hand, after applying voltage, the liquid crystal of sub pixel tilts up for narrow viewing angle mode. The proposed device has advantage for the function for simple manufacturing process and good viewing angle control with single panel.

  • PDF

A High-speed Atomic Force Microscope for Precision Measurement of Microstructured Surfaces

  • Cui, Yuguo;Arai, Yoshikazu;Asai, Takemi;Ju, BinFeng;Gao, Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.27-32
    • /
    • 2008
  • This paper describes a contact atomic force microscope (AFM) that can be used for high-speed precision measurements of microstructured surfaces. The AFM is composed of an air-bearing X stage, an air-bearing spindle with the axis of rotation in the Z direction, and an AFM probe unit. The traversing distance and maximum speed of the X stage are 300 mm and 400 mm/s, respectively. The spindle has the ability to hold a sample in a vacuum chuck with a maximum diameter of 130 mm and has a maximum rotation speed of 300 rpm. The bandwidth of the AFM probe unit in an open loop control circuit is more than 40 kHz. To achieve precision measurements of microstructured surfaces with slopes, a scanning strategy combining constant height measurements with a slope compensation technique is proposed. In this scanning strategy, the Z direction PZT actuator of the AFM probe unit is employed to compensate for the slope of the sample surface while the microstructures are scanned by the AFM probe at a constant height. The precision of such a scanning strategy is demonstrated by obtaining profile measurements of a microstructure surface at a series of scanning speeds ranging from 0.1 to 20.0 mm/s.

Study on Optical Characteristics of Nano Hollow Silica with TiO2 Shell Formation

  • Roh, Gi-Yeon;Sung, Hyeong-Seok;Lee, Yeong-Cheol;Lee, Seong-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.1
    • /
    • pp.98-103
    • /
    • 2019
  • Optical filters to control light wavelength of displays or cameras are fabricated by multi-layer stacking process of low and high index thin films. The process of multi-layer stacking of thin films has received much attention as an optimal process for effective manufacturing in the optical filter industry. However, multi-layer processing has disadvantages of complicated thin film process, and difficulty of precise control of film morphology and material selection, all of which are critical for transmittance and coloring effect on filters. In this study, the composite $TiO_2$, which can be used to control of UV absorption, coated on nano hollow silica sol, was synthesized as a coating material for optical filters. Furthermore, systematic analysis of the process parameters during the chemical reaction, and of the structural properties of the coating solutions was performed using SEM, TEM, XRD and photo spectrometry. From the structural analysis, we found that the 85 nm nano hollow silica with 2.5 nm $TiO_2$ shell formation was successfully synthesized at proper pH control and titanium butoxide content. Photo luminescence characteristics, excited by UV irradiation, show that stable absorption of 350 nm-light, correlated with a 3.54 eV band gap, existed for the $TiO_2$ shell-nano hollow silica reacted with 8.8 mole titanium butoxide solution. Transmittance observed on substrate of the $TiO_2$ shell-nano hollow silica showed effective absorption of 200-300 nm UV light without deterioration of visible light transparency.