• Title/Summary/Keyword: Nano 입자

Search Result 1,078, Processing Time 0.03 seconds

Preparation of Nano-Sized Tin Oxide Powder by Spray Pyrolysis Process (분무열분해(噴霧熱分解) 공정(工程)에 의한 주석(朱錫) 산화물(酸化物) 나노 분말(粉末) 제조(製造))

  • Yu, Jae-Keun;Cha, Kwang-Yong;Kim, Myung-Choun;Han, Joung-Su;Jang, Jae-Bum;Lee, Yong-Hwa;Kim, Dong-Hee
    • Resources Recycling
    • /
    • v.17 no.6
    • /
    • pp.79-88
    • /
    • 2008
  • This study is the previous stage for the mass production technology development of the nano-sized tin oxide powder by the recycling of the wasted tin metal, and nano-sized tin oxide powder with the average particle size below 50 nm is prepared from the tin chloride solution by the spray pyrolysis process. As the reaction temperature increases from 800 to 850, the average particle size of the generated powder increases from 20 to 30 nm. As the reaction temperature increases to 900, the droplet type is composed of the particles with the average size of the 30 nm. while the average size of the independent particles increases up to $80{\sim}100$ nm and the surface microstructure becomes more solid. Until $900^{\circ}C$, as the reaction temperature increases, the XRD peak intensity increases, while the specific surface area decreases. When the reaction temperature increases to 950, most of the powder appears with the independent type and the average particle size decrease down to 70 nm. The XRD peak intensity greatly decreases and the specific surface area increases almost twice.

Comparison Study of the Synthesized Silver Nano-particles using Liquid Phase Reduction Method and Alcohol Reduction Process (액상환원법과 알코올환원법으로 제조한 은나노입자특성 비교에 관한 연구)

  • Son, Eun-Jong;Hwang, Young-Gu;Shin, Yu-Shik;Jeong, Sung-Hoon
    • Textile Coloration and Finishing
    • /
    • v.23 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Silver nano-particles have been synthesized by liquid phase reduction method and alcohol reduction process. Silver nano-particles of the size 30 ~ 40 nm were formed successfully by alcohol reduction process. The formation, structure, morphology and size of silver nano-particles have been studied using FE-SEM, TEM, XRD, UV-visible spectroscopy. In particular high dispersion stability of the synthesized silver nano-particles could be obtained by PVP binding. Antibacterial activity of Ag/PET master batch sample made from its nano-silver particles showed excellent antibacterial activity against S. aureus and E. coli.

Removal of Nano-scaled Fluorescence Particles on Wafer by the Femtosecond Laser Shockwave (펨토초레이저 충격파에 의한 형광 나노입자 제거)

  • Park, Jung-Kyu;Cho, Sung-Hak;Kim, Jae-Gu;Chang, Won-Seok;Whang, Kyung-Hyun;Yoo, Byung-Heon;Kim, Kwang-Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.5
    • /
    • pp.150-156
    • /
    • 2009
  • The removal of tiny particles adhered to surfaces is one of the crucial prerequisite for a further increase in IC fabrication, large area displays and for the process in nanotechnology. Various cleaning techniques (wet chemical cleaning, scrubbing, pressurized jets and ultrasonic processes) currently used to clean critical surfaces are limited to removal of micrometer-sized particles. Therefore the removal of sub-micron sized particles from silicon wafers is of great interest. For this purpose various cleaning methods are currently under investigation. In this paper, we report on experiments on the cleaning effect of 100nm sized fluorescence particles on silicon wafer using the plasma shockwave occurred by femtosecond laser. The plasma shockwave is main effect of femtosecond laser cleaning to remove particles. The removal efficiency was dependent on the gap distance between laser focus and surface but in some case surface was damaged by excessive laser intensity. These experiments demonstrate the feasibility of femtosecond laser cleaning using 100nm size fluorescence particles on wafer.

Experimental of Absorption Performance Enhancement for Binary Nanofluids($NH_3/H_2O$ + Nano Particles) (이성분 나노유체($NH_3/H_2O$+나노입자)의 흡수성능 촉진실험)

  • Lee, Jin-Ki;Jung, Chung-Woo;Koo, June-Mo;Kang, Yong-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.124-129
    • /
    • 2008
  • The objectives of this paper are to examine the effect of nano-particles on the pool type absorption heat transfer enhancement and to find the optimal conditions to design a highly effective compact absorber for $NH_3/H_2O$ absorption system. The effect of $Al_2O_3$ and CNT particles on the absorption performance is studied experimentally. The experimental ranges of the key parameters are 20% of $NH_3$ concentration, $0{\sim}0.08%$ (volume fraction) of CNT particles, and $0{\sim}0.06%$ (volume fraction) of $Al_2O_3$ nano-particles. For the $NH_3/H_2O$ nanofluids, the heat transfer rate and absorption rate with 0.02 vol% $Al_2O_3$ nano-particles were found to be 28.9% and 17.8% higher than those without nano-particles, respectively. It is recommended that the concentration of 0.02 vol% of $Al_2O_3$ nano-particles be the best candidate for $NH_3/H_2O$ absorption performance enhancement.

  • PDF

Stability of Nano-emulsions Containing Fatty Acid and Fatty Alcohol (지방산 및 지방알코올을 함유한 나노에멀젼의 안정성)

  • Cho, Wan Goo;Kim, Kyung Ah;Jang, Seon Il;Cho, Byoung Ok
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2017
  • In this study, low viscous O/W (oil-in-water) nano-emulsion with fatty acid and fatty alcohol was prepared by phase inversion emulsification method using Tween 80 and Span 80 widely used in cosmetic products. The particle size of the nano-emulsion was increased as increasing the concentration of fatty alcohol in oil phase. Adjusting the HLB of mixed surfactants, a stable nano-emulsion with a narrow size distribution was produced. Similar change in viscosity and electrical conductivity in both systems containing fatty acid and fatty alcohol was shown in the vicinity of the phase inversion point. However, high viscosity was shown in a wide range of different aqueous fraction unlike the system consisting only oils and surfactants. The low viscous nano-emulsion with less than 100 nm droplet size was stable for one month or more at room temperature. O/W nano-emulsions with low viscosity containing fatty acid or fatty alcohol produced by low-energy emulsification method can be widely used as formulations of cosmetics.

A Study on Preparation of Nano size cement particle by Mechanical method (기계적 방법에 따른 나노 시멘트 입자의 제조에 관한 연구)

  • Jo Byung-Wan;Park Jong-Bin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.216-219
    • /
    • 2004
  • Due to the recent amazing achievements in nano technology. preparation of cement nano particles by mechanical method are examined to improve their properties. The experimental results show that the particle size after 3 hr milling were about 500nm. The SEM photographs of specimens also reveal that average sizes of cement particles are gradually decreased by milling time. And in the TG/DSC, influence of the alcohol is showed strongly. The value of TG of the crushed cement was larger than that of the non-crushed cement. That is also judged to be cause the alcohol.

  • PDF

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF

A Dual Micro Gas Sensor Array with Nano Sized $SnO_2$ Thin Film (나노 박막을 이용한 듀얼 $SnO_2$ 마이크로 가스센서 어레이)

  • Chung Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1641-1647
    • /
    • 2006
  • A dual micro gas sensor way for detecting reducing gas and bad order was fabricated using nano sized $SnO_2$ thin film fabrication method. To make nano-sized thin gas sensitive $SnO_2$ thin rilm, thin tin metal layer $2500{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2,\;SnO_2(+Pt)\;and\;SnO_2(+CuO)$ were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2(Pt)$ and $SnO_2(+CuO)$ showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.