• Title/Summary/Keyword: Nano 입자

Search Result 1,078, Processing Time 0.028 seconds

Characteristics of Nano Particle Precipitation and Residual Ozone Decomposition for Two-Stage ESP with DBD (배리어 유전체 방전형 2단 전기집진기의 나노입자 집진 및 잔류 오존 제거 특성)

  • Byeon, Jeong-Hoon;Ji, Jun-Ho;Yoon, Ki-Young;Hwang, Jung-Ho
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1678-1683
    • /
    • 2003
  • DBD(Dielectric Barrier Discharge) plasma in air is well established for the production of large quantities of ozone and is more recently being applied to aftertreatment processes for HAPs(Hazardous Air Pollutants). Although DBD high electron density and energy, its potential use as nano and sub-micron sized particle charging are not well known. Aim of this work is to determine design and operating parameters of a two-stage ESP with DBD. DBD and ESP are used as particle charger and precipitator, respectively. We measured particle precipitation efficiency of two-stage ESP and estimated ozone decomposition of both pelletized $MnO_2$ catalyst and pelletized activated carbon. To examine the particle precipitation efficiency, nano and sub-micron sized particles were generated by a tube furnace and an atomizer. AC voltage of $7{\sim}10$ kV(rms) and 60 Hz is used as DBD plasma source. DC -8 kV is applied to the ESP for particle precipitation. The overall particle collection efficiency for the two-stage ESP with DBD is over 85 % under 0.64 m/s face velocity. Ozone decomposition efficiency with pelletized $MnO_2$ catalyst or pelletized activated carbon packed bed is over 90 % when the face velocity is under 0.4 m/s in dry air.

  • PDF

Phase Behavior of Simvastatin Drug in Mixtures of Dimethyl Ether and Supercritical Carbon Dioxide (디메틸에베르와 초임계이산화탄소의 혼합물에서 Simvastatin 약물의 상거동)

  • Shin, Eun-Kyoung;Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.4
    • /
    • pp.237-243
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dimethyl ether (DME) and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing DME as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of DME and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the DME composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature.

  • PDF

Electrocatalytic Oxidation of NADH at the Modified Graphite Electrode Incorporating Gold Nano Particles (금 나노입자를 회합시킨 수식된 흑연전극으로 NADH의 전기촉매 산화반응)

  • Cha, Seong-Keuck;Han, Sung-Yub
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Mercaptopropionic acid(mpa) has been used to make self-assembled monolayer(SAMs) on the surface of graphite electrode incorporating gold nano particles, which are subsequently modified with dopamine(dopa). Such modified electrodes haying types of Gr(Au)/mpa-dopa were employed in the electrocatalytic oxidation of NADH. The responses of such modified electrodes were studied in terms of electron transfer kinetics and reaction procedure in the reaction. The reaction of the surface immobilized dopa with NADH was studied using the rotating disk electrode technique and a value of $5.06{\times}10^5M^{-1}s^{-1}$ was obtained for the second-order rate constant in 0.1 M phosphate buffer(pH=7.0), which was a $EC_{cat}$ and kinetic controlled procedure. But, the modified electrodes were diffusion controlled reaction having $4.64{\times}10^{-4}cm^2s^{-1}$ of the coefficient within $10^{-3}s$ after starting the reaction.

Rheological Characteristics of Nitromethane Gel Fuel with Nano/Micro Size of SiO2 Gellant (SiO2계열 젤화제 입자크기에 따른 니트로메탄 젤 추진제의 유변학적 특성 연구)

  • Jang, Jinwu;Kim, Sijin;Han, Seongjoo;Kim, Jinkon;Moon, Heejang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.456-461
    • /
    • 2017
  • In this study, the rheological properties of nitromethane gel propellants on nano/micron sized gelling agent are investigated. Silicon dioxide is used as the gellant with 5 wt%, 6.5 wt% and 8 wt% concentration, respectively, where the measurements are conducted under steady-state shear flow conditions using a rotational rheometer. The nitromethane/silicon dioxide gel showed non-Newtonian flow behavior for the entire experimental shear rate ranges. The gel fuels with nano-sized gellant had a slightly higher viscosity than the gel fuels with micron-sized one for low shear rate range. Additionally, it was found that Herschel-Bulkley model can hardly describe the rheological behavior of nitromethane gel propellant, but the NM model(by Teipel and Forter-Barth) is better suited to explain the rheological behavior of nitromethane gel propellant.

  • PDF

A Study on the Fire Resistance Performance of Mortars Using Mesoporous Silica Nanoparticles(MSNs) and PVA Fibers (다공성 나노실리카 입자(MSNs)와 PVA섬유를 혼입한 모르타르의 내화성능에 관한 연구)

  • Cheonpyo Park;Jakyung Lee;Taehyung Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.51-61
    • /
    • 2023
  • In this study, in order to improve the fire resistance performance of structures in case of fire in buildings and structures, PVA fibers and the ZnO particles combined with mesoporous nano silica (MSNs) were mixed with cement mortar, and the specimen was exposed to a temperature range of 20~1100℃. Then the residual compressive strength and weight change rate were measured to determine whether the fire resistance performance changed. As a result of the study, it was found that mixing mesoporous nano silica and PVA fiber together did not contribute to improving the fire resistance performance of cement mortar. On the other hand, mixing 0.5% of mesoporous nano silica and 0.1 vol% of PVA fiber showed the best improvement test results, showing that it was advantageous for fire resistance performance.

Synthesis of nano-sized Ga2O3 powders by polymerized complex method (착체중합법을 이용한 Ga2O3 나노 분말의 합성)

  • Jung, Jong-Yeol;Kim, Sang-Hun;Kang, Eun-Tae;Han, Kyu-Sung;Kim, Jin-Ho;Hwang, Kwang-Teak;Cho, Woo-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.6
    • /
    • pp.302-308
    • /
    • 2013
  • In this study, we report the synthesis and characteristics of gallium oxide ($Ga_2O_3$) nanoparticles prepared by the polymerized complex method. $Ga_2O_3$ nanoparticles were synthesized using $Ga(NO_3)_3$, ethylene glycol, and citric acid as the starting materials at a low temperature of $500{\sim}800^{\circ}C$. The temperature of the weight reduction by the loss of organic precursor was revealed using TG-DTA analysis. The crystal structural change of $Ga_2O_3$ nanoparticles by the annealing process was investigated by XRD analysis. The morphologies and the size distributions of $Ga_2O_3$ nanoparticles were analyzed using SEM.

Sintering and Microstructure of PZT Ceramics Prepared from Nanoparticles by Sol-Gel Process (나노 입자를 이용한 PZT 압전 세라믹스의 소결 및 미세구조)

  • Park Yong-Kap
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.6 no.6
    • /
    • pp.457-460
    • /
    • 2005
  • Nano-sized titanium oxide and zirconium oxide powders were synthesized by hydrolysis of titanium isopropoxide $[Ti(OC_3H7)_4]$ and zirconium tetrachloride ($ZrC1_4$) via a sol-gel technique. Lead titanate powders were prepared by mixing $TiO_2$ precursors with PbO slurry made with dilute $NH_4OH$. Lead zirconate titanate powders were, then, synthesized by mixing $PbTiO_3$ with $ZrO_2$ powders. The goal of this research was to obtain the $PbZrTiO_3(PZT)$ powders and sintering these powders at low temperature. The $PbTiO_3$ and PZT powders after firing were analyzed by X-ray diffraction(XRD) and transmission electron microscopy(TEM) was utilized to observe the shape and size of the synthesized nano-particles. In the XRD pattern, the well-crystallized PZT phase could be obtained in consequence of firing at $900^{\circ}C$. SEM micrographs also showed that grains of PZT were relatively well grown with the size of the range of $2{\~}4{\mu}m$. The densified perovskite structure of $PbZrTiO_3$ could be obtained by sintering at temperature as low as $900^{\circ}C$. Characterization of the samples showed improved piezoelectric properties.

  • PDF

Nanoemulsions: a Novel Vehicle for Cosmetics (나노에멀젼: 화장품을 위한 새로운 제형)

  • Cho, Wan-Goo
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.37 no.1
    • /
    • pp.1-21
    • /
    • 2011
  • This review describes several kinds of emulsification methods for nanoemulsions and the application of nanoemulsions. Nanoemulsion droplet sizes fall typically in the range of 20 ~200 nm and show narrow size distributions. Although most of the publications on either oil-in-water (O/W) or water-in-oil (W/O) nanoemulsions have reported their formation by dispersion or high-energy emulsification methods, an increased interest is observed in the study of nano-emulsion formation by condensation or low-energy emulsification methods based on the phase transitions that take place during the emulsification process. Phase behaviour studies have shown that the size of the droplets is governed by the surfactant phase structure (bicontinuous microemulsion or lamellar) at the inversion point induced by either temperature or composition. Studies on nanoemulsion formation by the phase inversion temperature (PIT) method have shown a relation between minimum droplet size and complete solubilization of the oil in a microemulsion bicontinuous phase independently of whether the initial phase equilibrium is single or multiphase. Due to their small droplet size nanoemulsions possess stability against sedimentation or creaming with Ostwald ripening forming the main mechanism of nanoemulsion breakdown. An application of nanoemulsions is the preparation of nanoparticles using a polymerizable monomer as the disperse phase where nanoemulsion droplets act as nanoreactors, cosmetics and controlled drug delivery. In this review, we mainly focus on the cosmetics.

Phase Behavior of Simvastatin Drug in Mixtures of Dichloromethane and Supercritical Carbon Dioxide and Microparticle Formation of Simvastatin Drug Usins Supercritical Anti-Solvent Process (디클로로메탄과 초임계 이산화탄소의 혼합용매에서 Simvastatin 약물의 상거동과 초임계 역용매 공정을 이용한 Simvastatin 약물 미세입자의 제조)

  • Oh, Dong-Joon;Lee, Byung-Chul
    • Clean Technology
    • /
    • v.13 no.1 s.36
    • /
    • pp.34-45
    • /
    • 2007
  • Phase behavior of the ternary systems of water-insoluble simvastatin drug, which is well known to be effective drugs for hypercholesterolemia therapy, in solvent mixtures of dichloromethane and supercritical carbon dioxide was investigated to present a guideline of establishing operating conditions in the particle formation of the drugs by a supercritical anti-solvent recrystallization process utilizing dichloromethane as a solvent and carbon dioxide as an anti-solvent. The solubilities of simvastatin in the mixtures of dichloromethane and carbon dioxide were determined as functions of temperature, pressure and solvent composition by measuring the cloud points of the ternary mixtures at various conditions using a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The solubility of the drug increased as the dichloromethane composition in solution and the system pressure increases at a fixed temperature. A lower solubility of the drug was obtained at a higher temperature. The second half of this work is focused on the particle formation of the simvastatin drug by a supercritical anti-solvent recrystallization process in a cylindrical high-pressure vessel equipped with an impeller. Microparticles of the simvastatin drug were prepared as functions of pressure (8 MPa to 12 MPa), temperature (303.15 K, 313,15 K), feed flow rate of carbon dioxide, and stirring speed (up to 3000 rpm), in order to observe the effect of those process parameters on the size and shape of the drug microparticles recrystallized.

  • PDF

Adsorption of Antibiotics on Serum Albumin Nanoparticle (혈청 알부민 나노입자를 이용한 항생제 흡착)

  • Kim, Hyunji;Lim, Sung In
    • Clean Technology
    • /
    • v.27 no.1
    • /
    • pp.55-60
    • /
    • 2021
  • Antibiotics are compounds broadly used to treat patients with infectious diseases and to enhance productivity in agriculture, fisheries, and livestock industries. However, due to the overuse of antibiotics and their low biodegradability, a substantial amount of antibiotics is leaking into the sewer, subsequently resulting in pollution and the emergence of antibiotic-resistant bacteria. This study explores biodegradable serum albumin's potential as an adsorbent to remove antibiotics from water. Serum albumin is a natural blood protein that transports various metabolites and hormones to all tissues' extravascular spaces. While serum albumin is highly water-soluble, it has intrinsic binding sites which readily accommodate ionic, hydrophilic, or hydrophobic molecules, rendering it a good building block for a nano-adsorbent. To induce coacervation, a desolvating agent, ethanol, was added dropwise into the aqueous albumin solution, resulting in dehydration and liquid-liquid phase separation of albumins into albumin nanoparticles within a size range of 150 ~ 170 nm. The addition of glutaraldehyde as a cross-linker improved the size stability and homogeneity of albumin nanoparticles. Adsorption of amoxicillin antibiotics on albumin nanoparticles was dependent upon glutaraldehyde concentration used in desolvation and pH during adsorption. The maximum adsorption capacity measured by spectrophotometry was found to be 12.4 micrograms of amoxicillin per milligram of albumin nanoparticle. These results demonstrate serum albumin's potential as a building block for fabricating a natural nano-adsorbent to remove antibiotics from water.