• Title/Summary/Keyword: Nano $TiO_2$

Search Result 556, Processing Time 0.024 seconds

Degradation of a nano-thick Au/Pt bilayered catalytic layer with an electrolyte in dye sensitized solar cells (염료감응태양전지의 Au/Pt 이중 촉매층의 전해질과의 반응에 따른 열화)

  • Noh, Yunyoung;Song, Ohsung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4013-4018
    • /
    • 2014
  • A 0.45 $cm^2$ DSSC device with a glass/FTO/blocking layer/$TiO_2$/N719(dye)/electrolyte/50 nm-Pt/50 nm-Au/FTO/glass was prepared to examine the stability of the Au/Pt bilayered counter electrode (CE) with electrolyte and the energy conversion efficiency (ECE) of dye-sensitized solar cells (DSSCs). For comparison, a 100 nm-thick Pt only CE DSSC was also prepared using the same method. The photovoltaic properties, such as the short circuit current density ($J_{sc}$), open circuit voltage ($V_{oc}$), fill factor (FF), and ECE, were checked using a solar simulator and potentiostat with time after assembling the DSSC. The microstructure of the Au/Pt bilayer was examined by optical microscopy after 0~25 minutes. The ECE of the Pt only CE-employed DSSC was 4.60 %, which did not show time dependence. On the other hand, for the Au/Pt CE DSSC, the ECEs after 0, 5 and 15 minutes were 5.28 %, 3.64 % and 2.09 %, respectively. The corrosion areas of the Au/Pt CE determined by optical microscopy after 0, 5, and 25 minutes were 0, 21.92 and 34.06 %. These results confirmed that the ECE and catalytic activity of Au/Pt CE decreased drastically with time. Therefore, a Au/Pt CE-employed DSSC may be superior to the Pt only CE-employed one immediately after integration of the device, but it would degrade drastically with time.

Lamellar Structured TaN Thin Films by UHV UBM Sputtering (초고진공 UBM 스퍼터링으로 제조된 라멜라 구조 TaN 박막의 연구)

  • Lee G. R.;Shin C. S.;Petrov I.;Greene J, E.;Lee J. J.
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.2
    • /
    • pp.65-68
    • /
    • 2005
  • The effect of crystal orientation and microstructure on the mechanical properties of $TaN_x$ was investigated. $TaN_x$ films were grown on $SiO_2$ substrates by ultrahigh vacuum unbalanced magnetron sputter deposition in mixed $Ar/N_2$ discharges at 20 mTorr (2.67 Pa) and at $350^{\circ}C$. Unlike the Ti-N system, in which TiN is the terminal phase, a large number of N-rich phases in the Ta-N system could lead to layers which had nano-sized lamella structure of coherent cubic and hexagonal phases, with a correct choice of nitrogen fraction in the sputtering mixture and ion irradiation energy during growth. The preferred orientations and the micro-structure of $TaN_x$ layers were controlled by varing incident ion energy $E_i\;(=30eV\~50eV)$ and nitrogen fractions $f_{N2}\;(=0.1\~0.15)$. $TaN_x$ layers were grown on (0002)-Ti underlayer as a crystallographic template in order to relieve the stress on the films. The structure of the $TaN_x$ film transformed from Bl-NaCl $\delta-TaN_x$ to lamellar structured Bl-NaCl $\delta-TaN_x$ + hexagonal $\varepsilon-TaN_x$ or Bl-NaCl $\delta-TaN_x$ + hexagonal $\gamma-TaN_x$ with increasing the ion energy at the same nitrogen fraction $f_{N2}$. The hardness of the films also increased by the structural change. At the nitrogen fraction of $0.1\~0.125$, the structure of the $TaN_x$ films was changed from $\delta-TaN_x\;+\;\varepsilon-TaN_x\;to\;\delta-TaN_x\;+\;\gamma-TaN_x$ with increasing the ion energy. However, at the nitrogen fraction of 0.15 the film structure did not change from $\delta-TaN_x\;+\;\varepsilon-TaN_x$ over the whole range of the applied ion energy. The hardness increased significantly from 21.1 GPa to 45.5 GPa with increasing the ion energy.

Comparing the Effect of Three Processing Methods for Modification of Filament Yarns with Inorganic Nanocomposite Filler and their Bioactivity against Staphylococcus aureus

  • Dastjerdi, Roya;Mojtahedi, M.R.M.;Shoshtari, A.M.
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.378-387
    • /
    • 2009
  • This research compared three methods for producing and processing nanocomposite polypropylene filament yarns with permanent antimicrobial efficiency. The three methods used to mix antimicrobial agents based on silver nano particles with PP were as follows: 1) mixing of PP powder and inorganic nanocomposite filler with the appropriate concentration using a twin-screw extruder and preparing granules, 2) method 1 with a singlerather than twin-screw extruder, and 3) producing the masterbatch by a twin-screw extruder and blending it with PP in the melt spinning process. All pure polypropylene samples and other combined samples had an acceptable spinnability at the spinning temperature of $240^{\circ}C$ and take-up speed of 2,000 m/min. After producing as-spun filament yarns by a pilot plant, melt spinning machine, the samples were drawn, textured and finally weft knitted. The physical and structural properties (e.g., linear density, tenacity, breaking elongation, initial modulus, rupture work, shrinkage and crystallinity) of the as-spun and drawn yarns with constant and variable draw ratios (the variable draw ratio was used to gain a constant breaking elongation of 50%) were investigated and compared, while DSC, SEM and FTIR techniques were used to characterize the samples. Finally, the antibacterial efficiency of the knitted samples was evaluated. The experimental results revealed that the crystallinity reduction of the as-spun yarn obtained from method 1 (5%) was more than that of method 2 (3%), while the crystallinity of the modified as-spun yarns obtained with method 3 remained unchanged compared to pure yarn. However, the drawing procedure compensated for this difference. By applying methods 2 and 3, the drawing generally improved the tenacity and modulus of the modified fibers, whereas method 1 degraded the constant draw ratio. Although the biostatic efficiency of the nanocomposite yarns was excellent with all three methods, the modified fabrics obtained from methods 1 and 2 showed a higher bioactivity.

Effect of Re-oxidation on the Electrical Properties of Mutilayered PTC Thermistors (적층 PTC 써미스터의 전기적 특성에 대한 재산화의 영향)

  • Chun, Myoung-Pyo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.98-103
    • /
    • 2013
  • The alumina substrates that Ni electrode was printed on and the multi-layered PTCR thermistors of which composition is $(Ba_{0.998}Ce_{0.002})TiO_3+0.001MnCO_3+0.05BN$ were fabricated by a thick film process, and the effect of re-oxidation temperature on their resistivities and resistance jumps were investigated, respectively. Ni electroded alumina substrate and the multi-layered PTC thermistor were sintered at $1150^{\circ}C$ for 2 h under $PO_2=10^{-6}$ Pa and then re-oxidized at $600{\sim}850^{\circ}C$ for 20 min. With increasing the re-oxidation temperature, the room temperature resistivity increased and the resistance jump ($LogR_{290}/R_{25}$) decreased, which seems to be related to the oxidation of Ni electrode. The small sized chip PTC thermistor such as 2012 and 3216 exhibits a nonlinear and rectifying behavior in I-V curve but the large sized chip PTC thermistor such as 4532 and 6532 shows a linear and ohmic behavior. Also, the small sized chip PTC thermistor such as 2012 and 3216 is more dependent on the re-oxidation temperature and easy to be oxidized in comparison with the large sized chip PTC thermistor such as 4532 and 6532. So, the re-oxidation conditions of chip PTC thermistor may be determined by considering the chip size.

Nanotechnology in the Surface Treatment of Titanium Implant. (임상가를 위한 특집 2 - 티타늄 임플란트 표면처리에서의 나노테크놀로지)

  • Oh, Seung-Han
    • The Journal of the Korean dental association
    • /
    • v.48 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Tissue engineering has been enhanced by advance in biomaterial nature, surface structure and design. In this paper, I report specifically vertically aligned titania ($TiO_2$) nanotube surface structuring for optimization of titanium implants utilizing nanotechnology. The formation, mechanism, characteristics of titania nanotubes are explained and emerging critical role in tissue engineering and regenerative medicine is reviewed. The main focus of this paper is on the unique 3 dimensional tubular shaped nanostructure of titania and its effects on creating epochal impacts on cell behavior. Particularly, I discuss how different cells cultured on titania nanotube are adhered, proliferated, differentiated and showed phenotypic functionality compared to those cultured on flat titanium. As a matter of fact, the presence of titania nanotube surface structuring on titanium for dental applications had an important effect improving the proliferation and mineralization of osteoblasts in vitro, and enhancing the bone bonding strength with rabbit tibia over conventional titanium implants in vivo. The nano-features of titania nanotubular structure are expected to be advantageous in regulating many positive cell and tissue responses for various tissue engineering and regenerative medicine applications.

Synthesis and Characterization of The Electrolessly Deposited Co(Re,P) Film for Cu Capping Layer (무전해 도금법으로 제조된 Co(Re,P) capping layer제조 및 특성 평가)

  • Han, Won-Kyu;Kim, So-Jin;Ju, Jeong-Woon;Cho, Jin-Ki;Kim, Jae-Hong;Yeom, Seung-Jin;Kwak, Noh-Jung;Kim, Jin-Woong;Kang, Sung-Goon
    • Korean Journal of Materials Research
    • /
    • v.19 no.2
    • /
    • pp.61-67
    • /
    • 2009
  • Electrolessly deposited Co (Re,P) was investigated as a possible capping layer for Cu wires. 50 nm Co (Re,P) films were deposited on Cu/Ti-coated silicon wafers which acted as a catalytic seed and an adhesion layer, respectively. To obtain the optimized bath composition, electroless deposition was studied through an electrochemical approach via a linear sweep voltammetry analysis. The results of using this method showed that the best deposition conditions were a $CoSO_4$ concentration of 0.082 mol/l, a solution pH of 9, a $KReO_4$ concentration of 0.0003 mol/l and sodium hypophosphite concentration of 0.1 mol/L at $80^{\circ}C$. The thermal stability of the Co (Re,P) layer as a barrier preventing Cu was evaluated using Auger electron spectroscopy and a Scanning calorimeter. The measurement results showed that Re impurities stabilized the h.c.p. phase up to $550^{\circ}C$ and that the Co (Re,P) film efficiently blocked Cu diffusion under an annealing temperature of $400^{\circ}C$ for 1hr. The good barrier properties that were observed can be explained by the nano-sized grains along with the blocking effect of the impurities at the fast diffusion path of the grain boundaries. The transformation temperature from the amorphous to crystal structure is increased by doping the Re.