• Title/Summary/Keyword: Nand Flash

Search Result 350, Processing Time 0.026 seconds

NAND-Type TLC Flash Memory Test Algorithm Using Cube Pattern (큐브 패턴을 이용한 NAND-Type TLC 플래시 메모리 테스트 알고리즘)

  • Park, Byeong-Chan;Chang, Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2018.07a
    • /
    • pp.357-359
    • /
    • 2018
  • 최근 메모리 반도체 시장은 SD(Secure Digital) 메모리 카드, SSD(Solid State Drive)등의 보급률 증가로 메모리 반도체의 시장이 대규모로 증가하고 있다. 메모리 반도체는 개인용 컴퓨터 뿐만 아니라 스마프폰, 테플릿 PC, 교육용 임베디드 보드 등 다양한 산업에서 이용 되고 있다. 또한 메모리 반도체 생산 업체가 대규모로 메모리 반도체 산업에 투자하면서 메모리 반도체 시장은 대규모로 성장되었다. 플래시 메모리는 크게 NAND-Type과 NOR-Type으로 나뉘며 플로팅 게이트 셀의 전압의 따라 SLC(Single Level Cell)과 MLC(Multi Level Cell) 그리고 TLC(Triple Level Cell)로 구분 된다. SLC 및 MLC NAND-Type 플래시 메모리는 많은 연구가 진행되고 이용되고 있지만, TLC NAND-Tpye 플래시 메모리는 많은 연구가 진행되고 있지 않다. 본 논문에서는 기존에 제안된 SLC 및 MLC NAND-Type 플래시 메모리에서 제안된 큐브 패턴을 TLC NAND-Type 플래시 메모리에서 적용 가능한 큐브 패턴 및 알고리즘을 제안한다.

  • PDF

Performance of the Maximum-Likelihood Detector by Estimation of the Trellis Targets on the Sixteen-Level Cell NAND Flash Memory (16레벨셀 낸드 플래시 메모리에서 트렐리스 정답 추정 기법을 이용한 최대 유사도 검출기의 성능)

  • Park, Dong-Hyuk;Lee, Jae-Jin
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.1-7
    • /
    • 2010
  • In this paper, we use the maximum-likelihood detection by the estimation of trellis targets on the 16-level cell NAND flash memory. This mechanism has a performance gain by using a maximum-likelihood detector. The NAND flash memory channel is a memory channel because of the coupling effect. Thus, we use the known data arrays to finding the targets of trellis. The maximum-likelihood detection by proposed scheme performs better than the threshold detection on the 16-level cell NAND flash memory channel.

Tracking Cold Blocks for Static Wear Leveling in FTL-based NAND Flash Memory (메모리에서 정적 마모도 평준화를 위한 콜드 블록 추적 기법)

  • Jang, Yonghun;Kim, Sungho;Hwang, Sang-Ho;Lee, Myungsub;Park, Chang-Hyeon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.3
    • /
    • pp.185-192
    • /
    • 2017
  • Due to the characteristics of low power, high durability and high density, NAND flash memory is being heavily used in various type of devices such as USB, SD card, smart phone and SSD. On the other hand, because of another characteristic of flash cell with the limited number of program/erase cycles, NAND flash memory has a short lifetime compared to other storage devices. To overcome the lifetime problem, many researches related to the wear leveling have been conducted. This paper presents a method called a TCB (Tracking Cold Blocks) using more reinforced constraint conditions when classifying cold blocks than previous works. TCB presented in this paper keeps a MCT (Migrated Cold block Table) to manage the enhanced classification process of cold blocks, with which unnecessary migrations of pages can be reduced much more. Through the experiments, we show that TCB reduces the overhead of wear leveling by about 30% and increases the lifetime up to about 60% compared to BET and BST.

Log-Structured B-Tree for NAND Flash Memory (NAND 플래시 메모리를 위한 로그 기반의 B-트리)

  • Kim, Bo-Kyeong;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.15D no.6
    • /
    • pp.755-766
    • /
    • 2008
  • Recently, NAND flash memory is becoming into the spotlight as a next-generation storage device because of its small size, fast speed, low power consumption, and etc. compared to the hard disk. However, due to the distinct characteristics such as erase-before-write architecture, asymmetric operation speed and unit, disk-based systems and applications may result in severe performance degradation when directly implementing them on NAND flash memory. Especially when a B-tree is implemented on NAND flash memory, intensive overwrite operations may be caused by record inserting, deleting, and reorganizing. These may result in severe performance degradation. Although ${\mu}$-tree has been proposed in order to overcome this problem, it suffers from frequent node split and rapid increment of its height. In this paper, we propose Log-Structured B-Tree(LSB-Tree) where the corresponding log node to a leaf node is allocated for update operation and then the modified data in the log node is stored at only one write operation. LSB-tree reduces additional write operations by deferring the change of parent nodes. Also, it reduces the write operation by switching a log node to a new leaf node when inserting the data sequentially by the key order. Finally, we show that LSB-tree yields a better performance on NAND flash memory by comparing it to ${\mu}$-tree through various experiments.

EM Algorithm for Designing Soft-Decision Binary Error Correction Codes of MLC NAND Flash Memory (멀티 레벨 낸드 플래시 메모리용 연판정 복호를 수행하는 이진 ECC 설계를 위한 EM 알고리즘)

  • Kim, Sung-Rae;Shin, Dong-Joon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.3
    • /
    • pp.127-139
    • /
    • 2014
  • In this paper, we present two signal processing techniques for designing binary error correction codes for Multi-Level Cell(MLC) NAND flash memory. MLC NAND flash memory saves the non-binary symbol at each cell and shows asymmetric channel LLR l-density which makes it difficult to design soft-decision binary error correction codes such as LDPC codes and Polar codes. Therefore, we apply density mirroring and EM algorithm for approximating the MLC NAND flash memory channel to the binary-input memoryless channel. The density mirroring processes channel LLRs to satisfy roughly all-zero codeword assumption, and then EM algorithm is applied to l-density after density mirroring for approximating it to mixture of symmetric Gaussian densities. These two signal processing techniques make it possible to use conventional code design algorithms, such as density evolution and EXIT chart, for MLC NAND flash memory channel.

The Instruction Flash memory system with the high performance dual buffer system (명령어 플래시 메모리를 위한 고성능 이중 버퍼 시스템 설계)

  • Jung, Bo-Sung;Lee, Jung-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.1-8
    • /
    • 2011
  • NAND type Flash memory has performing much researches for a hard disk substitution due to its low power consumption, cheap prices and a large storage. Especially, the NAND type flash memory is using general buffer systems of a cache memory for improving overall system performance, but this has shown a tendency to emphasize in terms of data. So, our research is to design a high performance instruction NAND type flash memory structure by using a buffer system. The proposed buffer system in a NAND flash memory consists of two parts, i.e., a fully associative temporal buffer for branch instruction and a fully associative spatial buffer for spatial locality. The spatial buffer with a large fetching size turns out to be effective serial instructions, and the temporal buffer with a small fetching size can achieve effective branch instructions. According to the simulation results, we can reduce average miss ratios by around 77% and the average memory access time can achieve a similar performance compared with the 2-way, victim and fully associative buffer with two or four sizes.

Improving the Lifetime of NAND Flash-based Storages by Min-hash Assisted Delta Compression Engine (MADE (Minhash-Assisted Delta Compression Engine) : 델타 압축 기반의 낸드 플래시 저장장치 내구성 향상 기법)

  • Kwon, Hyoukjun;Kim, Dohyun;Park, Jisung;Kim, Jihong
    • Journal of KIISE
    • /
    • v.42 no.9
    • /
    • pp.1078-1089
    • /
    • 2015
  • In this paper, we propose the Min-hash Assisted Delta-compression Engine(MADE) to improve the lifetime of NAND flash-based storages at the device level. MADE effectively reduces the write traffic to NAND flash through the use of a novel delta compression scheme. The delta compression performance was optimized by introducing min-hash based LSH(Locality Sensitive Hash) and efficiently combining it with our delta compression method. We also developed a delta encoding technique that has functionality equivalent to deduplication and lossless compression. The results of our experiment show that MADE reduces the amount of data written on NAND flash by up to 90%, which is better than a simple combination of deduplication and lossless compression schemes by 12% on average.

A method for optimizing lifetime prediction of a storage device using the frequency of occurrence of defects in NAND flash memory (낸드 플래시 메모리의 불량 발생빈도를 이용한 저장장치의 수명 예측 최적화 방법)

  • Lee, Hyun-Seob
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.4
    • /
    • pp.9-14
    • /
    • 2021
  • In computing systems that require high reliability, the method of predicting the lifetime of a storage device is one of the important factors for system management because it can maximize usability as well as data protection. The life of a solid state drive (SSD) that has recently been used as a storage device in several storage systems is linked to the life of the NAND flash memory that constitutes it. Therefore, in a storage system configured using an SSD, a method of accurately and efficiently predicting the lifespan of a NAND flash memory is required. In this paper, a method for optimizing the lifetime prediction of a flash memory-based storage device using the frequency of NAND flash memory failure is proposed. For this, we design a cost matrix to collect the frequency of defects that occur when processing data in units of Drive Writes Per Day (DWPD). In addition, a method of predicting the remaining cost to the slope where the life-long finish occurs using the Gradient Descent method is proposed. Finally, we proved the excellence of the proposed idea when any defect occurs with simulation.

An Address Translation Technique Large NAND Flash Memory using Page Level Mapping (페이지 단위 매핑 기반 대용량 NAND플래시를 위한 주소변환기법)

  • Seo, Hyun-Min;Kwon, Oh-Hoon;Park, Jun-Seok;Koh, Kern
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.3
    • /
    • pp.371-375
    • /
    • 2010
  • SSD is a storage medium based on NAND Flash memory. Because of its short latency, low power consumption, and resistance to shock, it's not only used in PC but also in server computers. Most SSDs use FTL to overcome the erase-before-overwrite characteristic of NAND flash. There are several types of FTL, but page mapped FTL shows better performance than others. But its usefulness is limited because of its large memory footprint for the mapping table. For example, 64MB memory space is required only for the mapping table for a 64GB MLC SSD. In this paper, we propose a novel caching scheme for the mapping table. By using the mapping-table-meta-data we construct a fully associative cache, and translate the address within O(1) time. The simulation results show more than 80 hit ratio with 32KB cache and 90% with 512KB cache. The overall memory footprint was only 1.9% of 64MB. The time overhead of cache miss was measured lower than 2% for most workload.

Analyzing Virtual Memory Write Characteristics and Designing Page Replacement Algorithms for NAND Flash Memory (NAND 플래시메모리를 위한 가상메모리의 쓰기 참조 분석 및 페이지 교체 알고리즘 설계)

  • Lee, Hye-Jeong;Bahn, Hyo-Kyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.6
    • /
    • pp.543-556
    • /
    • 2009
  • Recently, NAND flash memory is being used as the swap device of virtual memory as well as the file storage of mobile systems. Since temporal locality is dominant in page references of virtual memory, LRU and its approximated CLOCK algorithms are widely used. However, cost of a write operation in flash memory is much larger than that of a read operation, and thus a page replacement algorithm should consider this factor. This paper analyzes virtual memory read/write reference patterns individually, and observes the ranking inversion problem of temporal locality in write references which is not observed in read references. With this observation, we present a new page replacement algorithm considering write frequency as well as temporal locality in estimating write reference behaviors. This new algorithm dynamically allocates memory space to read/write operations based on their reference patterns and I/O costs. Though the algorithm has no external parameter to tune, it supports optimized implementations for virtual memory systems, and also performs 20-66% better than CLOCK, CAR, and CFLRU algorithms.