• Title/Summary/Keyword: Nakdong river water system

Search Result 251, Processing Time 0.028 seconds

Major Watershed Characteristics Influencing Spatial Variability of Stream TP Concentration in the Nakdong River Basin (낙동강 유역에서 하천 TP 농도의 공간적 변동성에 영향을 미치는 주요 유역특성)

  • Seo, Jiyu;Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.3
    • /
    • pp.204-216
    • /
    • 2021
  • It is important to understand the factors influencing the temporal and spatial variability of water quality in order to establish an effective customized management strategy for contaminated aquatic ecosystems. In this study, the spatial diversity of the 5-year (2015 - 2019) average total phosphorus (TP) concentration observed in 40 Total Maximum Daily Loads unit-basins in the Nakdong River watershed was analyzed using 50 predictive variables of watershed characteristics, climate characteristics, land use characteristics, and soil characteristics. Cross-correlation analysis, a two-stage exhaustive search approach, and Bayesian inference were applied to identify predictors that best matched the time-averaged TP. The predictors that were finally identified included watershed altitude, precipitation in fall, precipitation in winter, residential area, public facilities area, paddy field, soil available phosphate, soil magnesium, soil available silicic acid, and soil potassium. Among them, it was found that the most influential factors for the spatial difference of TP were watershed altitude in watershed characteristics, public facilities area in land use characteristics, and soil available silicic acid in soil characteristics. This means that artificial factors have a great influence on the spatial variability of TP. It is expected that the proposed statistical modeling approach can be applied to the identification of major factors affecting the spatial variability of the temporal average state of various water quality parameters.

Base Flow Estimation in Uppermost Nakdong River Watersheds Using Chemical Hydrological Curve Separation Technique (화학적 수문곡선 분리기법을 이용한 낙동강 최상류 유역 기저유출량 산정)

  • Kim, Ryoungeun;Lee, Okjeong;Choi, Jeonghyeon;Won, Jeongeun;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.6
    • /
    • pp.489-499
    • /
    • 2020
  • Effective science-based management of the basin water resources requires an understanding of the characteristics of the streams, such as the baseflow discharge. In this study, the base flow was estimated in the two watersheds with the least artificial factors among the Nakdong River watersheds, as determined using the chemical hydrograph separation technique. The 16-year (2004-2019) discontinuous observed stream flow and electrical conductivity data in the Total Maximum Daily Load (TMDL) monitoring network were extended to continuous daily data using the TANK model and the 7-parameter log-linear model combined with the minimum variance unbiased estimator. The annual base flows at the upper Namgang Dam basin and the upper Nakdong River basin were both analyzed to be about 56% of the total annual flow. The monthly base flow ratio showed a high monthly deviation, as it was found to be higher than 0.9 in the dry season and about 0.46 in the rainy season. This is in line with the prevailing common sense notion that in winter, most of the stream flow is base flow, due to the characteristics of the dry season winter in Korea. It is expected that the chemical-based hydrological separation technique involving TANK and the 7-parameter log-linear models used in this study can help quantify the base flow required for systematic watershed water environment management.

Study of Fish Monitoring for of Exotic Fishes Management of Ecological Park at Nakdong River 1 (Nakdong River Site) (낙동강 생태공원 지역 외래어종 관리를 위한 어종 모니터링 연구 1 (낙동강))

  • Joon Gu Kang;Sung Jung Kim;Hong Koo Yeo
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.184-192
    • /
    • 2023
  • Influx of exotic fishes is the reason of destruction of the ecosystem and Eco-Diversity Recently, River project was conducted to consider environmental function. Therefore, farmlands structure along the river was removed such as vinyl greenhouse. In order to supply water eco-diversity, ecological park was built. In spite of nature river improvement, the ecological system in river will be break down by exotic fishes. This study was conducted to investigate analyze the fish faun and prevailing species occupancy in Nakdong river. This data will be used to make the management plan of exotic fishes in ecological park around Nakdong river.

The Spring Metazooplankton Dynamics in the River-Reservoir Hybrid System (Nakdong River, Korea): Its Role in Controlling the Phytoplankton Biomass (강-저수지 복합형 시스템내 봄 동물플랑크톤의 역동성 (낙동강, 한국): 식물플랑크톤 생체량 조절자로서의 역할)

  • Chang, Kwang-Hyeon;Jeong, Kwang-Seuk;Joo, Gea-Jae;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.4 s.105
    • /
    • pp.420-426
    • /
    • 2003
  • During a three-year study (2000-2002), dramatic changes in the phytoplankton biomass and high transparency were repeatedly observed during mid-spring in the lower part of the Nakdong River. Rotifers (Brachionus, Keratella, Polyarthra) , sharply increased toward the middle and end of spring. As hydrologic retention time increased (to near 20 days) and water temperature increased from $10^{\circ}C$ to > $20^{\circ}C$ toward the end of spring, small cladocerans noticeably increased. Once phytoplankton biomass passed their peak stage in the mid-spring, a short period (one or two weeks) of relatively low phytoplankton biomass and high Secchi transparencies occurred. Grazing by the zooplankton was highest in spring, thus, it seems that high grazing activities of zooplankton grazing regulated phytoplankton dynamics in the river. The results indicate that the role of zooplankton grazing in controlling the phytoplankton biomass becomes more important during the spring when river water is relatively stagnant.

Spatial Dynamics of Diatom Community in the Mid to Lower Part of the Nakdong River, South Korea

  • Kim, Myoung-Chul;La, Geung-Hwan;Jeong, Kwang-Seuk;Kim, Dong-Kyun;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.4
    • /
    • pp.576-580
    • /
    • 2007
  • Phytoplankton community dynamics were studied from 2004 to 2006 with two and four weeks interval at mid to lower part of the Nakdong River (Waegwan: RK 194, Goryeong: RK 157, Jukpo: RK 112, Namji: RK 75 and Hanam: RK 63: RK: distance from the Estuarine Barrage), South Korea. Annual averages of water temperature was about $16^{\circ}C$, and dissolved oxygen was ranged between 10.0 and 11.5 mg $L^{-1}$ (percent saturation, 106.5 to 112.8%). Diatoms were dominant group with over 60% of phytoplankton abundance in all study sites (Waegwan: 64%, Goryeong: 69%, Jukpo: 73%, Namji: 79%, and Hanam: 83%). However, the occasional dominances of other groups such as green algae and blue-green algae were observed from March to October. Stephanodiscus hantzschii was dominant species and the relative abundances were highat all study sites (48-72%). The ratio of S. hantzschiiltotal phytoplankton abundance were showed a clear increasing tendency toward the estuarine barrage: i.e. 0.31 at Waegwan, 0.39: Goryeong, 0.50: Jukpo, 0.56: Namji, 0.60: Hanam. The results of this study provide the information that the phytoplankton community structure in a regulated river system is basically affected by the physical properties such as water velocity and retention time, resulting in single species dominance by the stagnancy of river flow.

A Study on Estimation of the Delivery Ratio by Flow Duration in a Small-Scale Test Bed for Managing TMDL in Nakdong River (낙동강수계 수질오염총량관리를 위한 시범소유역 유황별 유달율 산정방법 연구)

  • Shon, Tae-Seok;Park, Jae-Bum;Shin, Hyun-Suk
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.792-802
    • /
    • 2009
  • The objective of this study is to construct the watershed management system with link of the non-point sources model and to estimate delivery ratio duration curves for various pollutants. For the total water pollution load management system, non-point source model should be performed with the study of the characteristic about non-point sources and loadings of non-point source and the allotment of pollutant in each area. In this study, daily flow rates and delivered pollutant loads of Nakdong river basin are simulated with modified TANK model and minimum variance unbiased estimator and SWAT model. Based on the simulation results, flow duration curves, load duration curves, and delivery ratio duration curves have been established. Then GIS analysis is performed to obtain several hydrological geomorphic characteristics such as watershed area, stream length, watershed slope and runoff curve number. As a result, the SWAT simulation results show good agreements in terms of discharge, BOD, TN, TP but for more exact simulation should be kept studying about variables and parameters which are needed for simulation. And as a result of the characteristic discharges, pollutants loading with the runoff and delivery ratios, non-point sources effects were higher than point sources effects in the small-scale test bed of Nakdong river basin.

Reconsideration for Current Water Quality Monitoring System throughout Daily Observation (매일 관측을 통한 현행 수질 모니터링 시스템 주기에 관한 재고)

  • Bae, Hun-Kyun
    • Journal of Environmental Policy
    • /
    • v.12 no.1
    • /
    • pp.59-74
    • /
    • 2013
  • The weakness of current water quality monitoring system was reviewed to manage Nakdong river's water quality. The current monitoring system has sampling periods lasting for a week to 10 days, but these-SAMpling periods may not accurately measure the real level of water quality. Therefore, daily sampling and analysis of water samples for nine factors was performed from May 1st 2011 to Sep. 30st 2011 to check the water quality changes at three-SAMpling points, Munsanri (the upper side of Kangjung-Koryung weir), Kangchang (the outlet of the Kumho River) and Samunjin (the lower side of Kangjung-Koryung weir). As demonstrated by the results, concentrations of all nine factors dramatically changed on a daily basis, so daily sampling and analysis of water quality samples may be needed instead of weekly sampling and analysis of water quality samples to ensure the proper management of the Nakdong River's water quality. However, daily observations for all water sampling points are not possible because costs and labors are limited, so that new methods which could support the current monitoring system should be developed.

  • PDF

Integration of Total Pollution Load Management System and Environmental Impact Assessment related System (수계 오염총량관리제와 환경영향평가제도의 통합운영방안)

  • Lee, Jong-Ho
    • Journal of Environmental Impact Assessment
    • /
    • v.12 no.5
    • /
    • pp.359-367
    • /
    • 2003
  • The total pollution load management system of watershed has been implemented upon Special Law pertaining to the Han River Watershed Water Quality Improvement and Residents Support, Special Law pertaining to the Nakdong River Watershed Water Management and Residents Support, Special Law pertaining to the Youngsan River Watershed Water Management and Residents Support, and Special Law pertaining to the Seomjin River Watershed Water Management and Residents Support in Korea since 2002. But many other similar systems with total pollution load management system of watershed are being operated separately or independently, even though its purpose is nearly same with those of the total maximum pollutants load management in Law on Water Quality Environmental Protection, environmental impact assessment(EIA) in Law of Impact Assessment on Environment, Transportation and Disaster and Pre-environmental assessment of Environmental Policy Act. Therefore the contents of total pollution load management system of watershed and many other related systems could be overlapped and at some times have inconsistency among them. This study suggests first the integrated operation of total pollution load management system of watershed, EIA, pre-environmental assessment, urban planning, and sewage planning and secondly EIA system development by integration of EIA and pre-environmental assessment and strategic environmental assessment(SEA).

Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model (베이지안 네트워크 모형을 이용한 낙동강 유역의 가뭄과 수질관리의 인과관계에 대한 확률론적 평가)

  • Yoo, Jiyoung;Ryu, Jae-Hee;Lee, Joo-Heon;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.769-777
    • /
    • 2021
  • This study investigated the change of the achievement rate of the target water quality conditioned on the occurrence of severe drought, to assess the effects of meteorological drought on the water quality management in the Nakdong River basin. Using three drought indices with difference time scales such as 30-, 60-, 90-day, i.e., SPI30, SPI60, SPI90, and three water quality indicators such as biochemical oxygen demand (BOD), total organic carbon (TOC), and total phosphorus (T-P), we first analyzed the relationship between severe drought occurrence water quality change in mid-sized watersheds, and identified the watersheds in which water quality was highly affected by severe drought. The Bayesian network models were constructed for the watersheds to probabilistically assess the relationship between severe drought and water quality management. Among 22 mid-sized watersheds in the Nakdong River basin, four watersheds, such as #2005, #2018, #2021, and #2022, had high environmental vulnerability to severe drought. In addition, severe drought affected spring and fall water quality in the watershed #2021, summer water quality in the #2005, and winter water quality in the #2022. The causal relationship between drought and water quality management is usufaul in proactive drought management.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.