• Title/Summary/Keyword: Nakagami-m fading

Search Result 92, Processing Time 0.028 seconds

Underlay Cooperative Cognitive Networks with Imperfect Nakagami-m Fading Channel Information and Strict Transmit Power Constraint: Interference Statistics and Outage Probability Analysis

  • Ho-Van, Khuong;Sofotasios, Paschalis C.;Freear, Steven
    • Journal of Communications and Networks
    • /
    • v.16 no.1
    • /
    • pp.10-17
    • /
    • 2014
  • This work investigates two important performance metrics of underlay cooperative cognitive radio (CR) networks: Interference cumulative distribution function of licensed users and outage probability of unlicensed users. These metrics are thoroughly analyzed in realistic operating conditions such as imperfect fading channel information and strict transmit power constraint, which satisfies interference power constraint and maximum transmit power constraint, over Nakagami-m fading channels. Novel closed-form expressions are derived and subsequently validated extensively through comparisons with respective results from computer simulations. The proposed expressions are rather long but straightforward to handle both analytically and numerically since they are expressed in terms of well known built-in functions. In addition, the offered results provide the following technical insights: i) Channel information imperfection degrades considerably the performance of both unlicensed network in terms of OP and licensed network in terms of interference levels; ii) underlay cooperative CR networks experience the outage saturation phenomenon; iii) the probability that the interference power constraint is satisfied is relatively low and depends significantly on the corresponding fading severity conditions as well as the channel estimation quality; iv) there exists a critical performance trade-off between unlicensed and licensed networks.

Performance of Radio Communication DS/CDMA System with Diversity Technique and BCH Coding under Impulsive Noise and Nakagami Fading (임펄스 잡음과 나카가미 페이딩이 존재할 때 다이버시티 기법과 오류정정 부호를 이용한 무선통신 DS/CDMA 시스템의 오율 특성)

  • 김지웅;강희조;이권현
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.539-549
    • /
    • 1999
  • In this paper, the bit error rare (BER) performance of DS/CDMA DQPSK communication system in the presence of multi access interference, impulsive noise and Nakagami fading is investigated. The DS/CDMA DQPSK communication system adopts Maximum Ratio Combining (MRC) diversity reception and error correcting BCH code technique to enhance system performance. Using the derived error probability equation, the error rate performance of DS/CDMA DQPSK communication system has been evaluated and shown in figures to discuss as a function of impulsive index(A), Gaussian noise to impulsive noise power ratio($\Gamma$'), multi access interference(Κ), Nakagami fading parameter(m), the number of diversity branch (L), the number of error correction symbol (t), PN code sequence length(N) and $E_b/N_0$. The error performance of DS/CDMA-MDPSK signals improve by adopting MRC diversity and BCH(15,7) coding technique in the environment of impulsive noise plus Nagakami fading. From the results, we known that proposed system is affected by multi access interference, impulsive noise and Nakagami fading in radio communication system environment. Also, BER performance of DS/CDMA DQPSK communication system cam be improved increasing either the power of desired signal or the value of Gaussian noise to impulsive noise power ratio. And BCH(15,7) code technique is more effective to restrain the affection of multi access, interference, impulsive noise and Nakagami fading in DS/CDMA DQPSK communication system than MRC diversity reception technique.

  • PDF

Performance Analysis of the FH/MFSK System using the Selection Diversity in Nakagami Fading Channel (나카가미 페이딩 채널에서 선택 합성 다이버시티를 적용한 FH/MFSK 시스템의 성능분석)

  • Lee, Chung-Seong;Kim, Hang-Rae;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1186-1193
    • /
    • 2000
  • In this paper, the system performance with the selection diversity, which is applied to the FH/MFSK system in Nakagami fading channel, is analyzed. The deletion probability is derived from the received signal to noise ratio(SNR) after selection combining and the parameters such as the number of users(M), SNR, Nakagami fading figure(m), and the number of diversity branches(D) is used for the performance analysis of the FH/MFSK system. Assuming that m set 1, it is observed that the bit error rate(BER) is 1.0$\times$$10^{-3}$ and 1.0$\times$$10^{-4}$ at D =1(no diversity) and D=2, respectively, and then is decreased by 10 times. Assuming that m set 2, it is also shown that the BER has a constant value although D is increased. In the case of D=2, the system capacity is more 75% and 20% than that considering no diversity at SNR=15 dB and 25 dB, respectively.

  • PDF

Exact and Approximate Symbol Error Probability of cooperative systems with best relay selection and all participating relaying using Amplify and Forward or Decode and Forward Relaying over Nakagami-m fading channels

  • Halima, Nadhir Ben;Boujemaa, Hatem
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.81-108
    • /
    • 2018
  • In this paper, we derive the theoretical Symbol Error Probability (SEP) of cooperative systems with best relay selection for Nakagami-m fading channels. For Amplify and Forward (AF) relaying, the selected relay offers the best instantaneous Signal to Noise Ratio (SNR) of the relaying link (source-relay-destination). In cooperative networks using Decode and Forward (DF), the selected relay offers the best instantaneous SNR of the link between the relay and the destination among the relays that have correctly decoded the transmitted information by the source. In the second part of the paper, we derive the SEP when all participating AF and DF relaying is performed. In the last part of the paper, we extend our results to cognitive radio networks where there is interference constraints : only relays that generate interference to primary receiver lower than a predefined threshold T can transmit. Both AF and DF relaying with and without relay selection are considered.

Performance Analysis of Multicarrier DS/CDMA System Employing Combined Modulation techniques in a Nakagami Fading Channel (나카가미 페이딩 채널에서 합성변조 기법을 채용한 다중반송파 DS/CDMA 시스템 성능 분석)

  • 양원일;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.1
    • /
    • pp.52-60
    • /
    • 2001
  • In this paper proposes a multi-carrier MFSK-DPSK/DS-CDMA combined modulation techniques in Nakagami fading environment. Also, multi-carrier DS-CDMA combined system is a promising technique for mobile communications systems, since it has a strong immunity to multipath fading and increasing bandwidth efficiency. The modulations under consideration are noncoherent M-ary frequency shift keying (MFSK)and an MFSK based joint frequency phase modulation utilizing differential phase shift keying (DPSK). With the result, performance improvement of power efficiency and bandwidth efficiency combined system in multi-carrier MFSK-DPSK/DS-CDMA are better then conventional communication system.

  • PDF

Performance Analysis of Arbitrary Rectangular QAM over Nakagami Fading Channels with MRC in the Presence of Co-channel Interference (동일 채널 간섭이 존재하는 나카가미 채널에서 임의 직사각 QAM 신호의 MRC 다이버시티 수신 성능)

  • 현광민;윤동원;박상규
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.257-265
    • /
    • 2004
  • General closed-form expression is derived and analyzed for the exact bit error rate (BER) performance of the arbitrary rectangular Gray coded QAM signal in conjunction with maximal-ratio combining (MRC) diversity on frequency non-selective slow m-distributed Nakagami fading channel in the presence of co-channel interference. Numerical results demonstrate error performance improvement with the use of MRC diversity reception. The new expressions presented here are suitable for evaluating various cases of practical interest on wireless communication channels.

Performance Analysis of DS/CDMA Communication System with MRC Diversity and CCI Canceller in Nakagami Fading Environment (나카가미 페이딩 환경하에서 MRC 다이버시티와 간섭제거기를 채용한 DS/CDMA 통신 시스템의 성능 분석)

  • 소준영;강희조
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.7
    • /
    • pp.1010-1021
    • /
    • 1999
  • In this paper, error performance of DS/CDMA GMSK system has been analyzed in a radio channel which is characterized by multi-user interference(MUI) and Nakagami fading. The DS/CDMA GMSK system adopts Maximum Ratio Combining(MRC) diversity and co-channel interference (CCI) to enhance system performance. Using the derived error probability equation, the error performance of DS/CDMA GMSK system has been evaluated and shown in figures to discuss as a function of PN code length(N), number of multi-user(K), number of diversity branch(L), and bit energy per noise power ratio ($E_b/N_0$), fading index(m). The results show that there is a substantial enhancement in performance by employing an MRC diversity or a CCI canceller. Additional improvement can be obtained when the MRC diversity and the CCI canceller are adopted in cascade form. Consequently, we expected that proposed system structure is reliable to the voice communication system in Nakagami fading, multi-user interferences and multipath channel.

  • PDF

Performance Improvement of Adaptive Modulation Systems in Wireless Multimedia Communication Environment (무선 멀티미디어 통신 환경에서 적응변조시스템의 성능개선)

  • 강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.893-898
    • /
    • 2003
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme and coding techniques using an adaptive modulation system to achieve high throughput data transmission systems for wireless multimedia communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter(m). When the received Eb/No is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received Eb/No is low. The modulation method have been adopted QPSK(Quadrature Phase Shift Keying), 16QAM(Quadrature Amplitude Modulation), 64QAM, 256QAM. Therefore, adaptive modulation systems with truncated type-II hybrid ARQ scheme is proper for wireless multimedia communication system that require high reliability and delay-limited applications.

Improvement Performance of Truncated Type-II Hybrid ARQ Scheme and MRC Diversity Techniques using an Adaptive Modulation in DS -CDMA Cellular Mobile Communication System (DS-CDMA 셀룰라 이동통신 시스템에서 적응변조방식을 이용한 Truncated Type-II Hybrid ARQ 방식과 최대비 합성 다이버시티 기법에 의한 성능 개선)

  • 양재훈;김지웅;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.661-667
    • /
    • 2001
  • This paper proposes a Truncated Type-II Hybrid ARQ scheme using an adaptive modulation system to achieve high throughput data transmission systems for DS-CDMA cellular mobile communication systems. In this paper, the adaptive modulation system analyzed in Nakagami (m-distribution) fading channel environment. The adaptive modulation system controls the modulation level and symbol rate according to the Nakagami fading parameter( m). When the received Eb/No is high or the Nakagami fading parameter m is high, the propose system selects higher modulation level and higher symbol rate to increase throughput. On the other hand, this system selects lower modulation level and lower symbol rate to prevent throughput performance degradation when the received Eb/No is low. The modulation method have been adopted QPSK 16QAM, 64QAM, 256QAM. Therefore, adaptive modulation systems with Truncated Type II Hybrid ARQ Scheme is proper for mobile and radio data communication system that require high reliability and delay-limited applications.

  • PDF

Optimal Chip Rate of Power and Rate Adapted DS/CDMA Communication Systems in Nakagami Fading Channels (나카가미 페이딩 채널에서 전력 및 전송률 적응화 직접 대역확산 부호분할 다중접속 통신시스템을 위한 최적 칩률에 관한 연구)

  • Lee, Ye-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.128-133
    • /
    • 2010
  • We investigate the optimal chip rate of power or rate adapted direct-sequence code division multiple access (DS/CDMA) communication systems in Nakagami fading channels. We find that the optimal chip rate that maximizes the spectral efficiency depends upon both the channel parameters, such as multipath intensity profile (MIP) and line-of-sight (LOS) component, and the adaptation scheme itself. With the rate adaptation, the optimal chip rate is less than $1/T_m$, irrespective of the channel parameters, where $1/T_m$ is multipath delay spread. This indicates that with the rate adaptation, correlation receiver achieves higher spectral efficiency than RAKE receiver. With the power adaptation, however, the optimal chip rate and the corresponding number of tabs in RAKE receiver are sensitive to MIP and LOS component.