• 제목/요약/키워드: Naive Bayes classification

검색결과 125건 처리시간 0.033초

IMU 원신호 기반의 기계학습을 통한 충격전 낙상방향 분류 (Classification of Fall Direction Before Impact Using Machine Learning Based on IMU Raw Signals)

  • 이현빈;이창준;이정근
    • 센서학회지
    • /
    • 제31권2호
    • /
    • pp.96-101
    • /
    • 2022
  • As the elderly population gradually increases, the risk of fatal fall accidents among the elderly is increasing. One way to cope with a fall accident is to determine the fall direction before impact using a wearable inertial measurement unit (IMU). In this context, a previous study proposed a method of classifying fall directions using a support vector machine with sensor velocity, acceleration, and tilt angle as input parameters. However, in this method, the IMU signals are processed through several processes, including a Kalman filter and the integration of acceleration, which involves a large amount of computation and error factors. Therefore, this paper proposes a machine learning-based method that classifies the fall direction before impact using IMU raw signals rather than processed data. In this study, we investigated the effects of the following two factors on the classification performance: (1) the usage of processed/raw signals and (2) the selection of machine learning techniques. First, as a result of comparing the processed/raw signals, the difference in sensitivities between the two methods was within 5%, indicating an equivalent level of classification performance. Second, as a result of comparing six machine learning techniques, K-nearest neighbor and naive Bayes exhibited excellent performance with a sensitivity of 86.0% and 84.1%, respectively.

A Novel Classification Model for Employees Turnover Using Neural Network for Enhancing Job Satisfaction in Organizations

  • Tarig Mohamed Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.71-78
    • /
    • 2023
  • Employee turnover is one of the most important challenges facing modern organizations. It causes job experiences and skills such as distinguished faculty members in universities, rare-specialized doctors, innovative engineers, and senior administrators. HR analytics has enhanced the area of data analytics to an extent that institutions can figure out their employees' characteristics; where inaccuracy leads to incorrect decision making. This paper aims to develop a novel model that can help decision-makers to classify the problem of Employee Turnover. By using feature selection methods: Information Gain and Chi-Square, the most important four features have been extracted from the dataset. These features are over time, job level, salary, and years in the organization. As one of the important results of this research, these features should be planned carefully to keep organizations their employees as valuable assets. The proposed model based on machine learning algorithms. Classification algorithms were used to implement the model such as Decision Tree, SVM, Random Frost, Neuronal Network, and Naive Bayes. The model was trained and tested by using a dataset that consists of 1470 records and 25 features. To develop the research model, many experiments had been conducted to find the best one. Based on implementation results, the Neural Network algorithm is selected as the best one with an Accuracy of 84 percents and AUC (ROC) 74 percents. By validation mechanism, the model is acceptable and reliable to help origination decision-makers to manage their employees in a good manner.

문헌간 유사도를 이용한 자동분류에서 미분류 문헌의 활용에 관한 연구 (Utilizing Unlabeled Documents in Automatic Classification with Inter-document Similarities)

  • 김판준;이재윤
    • 정보관리학회지
    • /
    • 제24권1호
    • /
    • pp.251-271
    • /
    • 2007
  • 문헌간 유사도를 자질로 사용하는 분류기에서 미분류 문헌을 학습에 활용하여 분류 성능을 높이는 방안을 모색해 보았다. 자동분류를 위해서 다량의 학습문헌을 수작업으로 확보하는 것은 많은 비기 들기 때문에 미분류 문헌의 활용은 실용적인 면에서 중요하다. 미분류 문헌을 활용하는 준지도학습 알고리즘은 대부분 수작업으로 분류된 문헌을 학습데이터로 삼아서 미분류 문헌을 분류하는 첫 번째 단계와, 수작업으로 분류된 문헌과 자동으로 분류된 문헌을 모두 학습 데이터로 삼아서 분류기를 학습시키는 두 번째 단계로 구성된다. 이 논문에서는 문헌간 유사도 자질을 적용하는 상황을 고려하여 두 가지 준지도학습 알고리즘을 검토하였다. 이중에서 1단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질 생성에만 활용하므로 간단하며, 2단계 준지도학습 방식은 미분류 문헌을 문헌유사도 자질생성과 함께 학습 예제로도 활용하는 알고리즘이다. 지지벡터기계와 나이브베이즈 분류기를 이용한 실험 결과, 두 가지 준지도학습 방식 모두 미분류 문헌을 활용하지 않는 지도학습 방식보다 높은 성능을 보이는 것으로 나타났다. 특히 실행효율을 고려한다면 제안된 1단계 준지도학습 방식이 미분류 문헌을 활용하여 분류 성능을 높일 수 있는 좋은 방안이라는 결론을 얻었다.

나이브 베이즈 기반 소셜 미디어 상의 신조어 감성 판별 기법 (Sensitivity Identification Method for New Words of Social Media based on Naive Bayes Classification)

  • 김정인;박상진;김형주;최준호;김한일;김판구
    • 스마트미디어저널
    • /
    • 제9권1호
    • /
    • pp.51-59
    • /
    • 2020
  • 인터넷의 발달과 스마트폰의 보급으로 인하여 그에 따른 소셜 미디어 문화가 형성됨에 따라 PC통신부터 지금까지 소셜 미디어 신조어가 그 문화로 자리 잡아가고 있다. 소셜 미디어의 등장과 사람들의 가교역할을 해주는 스마트폰의 보급화로 신조어가 생기고 빈번하게 사용되고 있는 추세이다. 신조어의 사용은 다양한 문자 제한 메신저의 문제점을 해결하고 짧은 문장을 사용하여 데이터를 줄이는 등 많은 장점을 가지고 있다. 그러나 신조어에는 사전적인 의미가 없으므로 데이터 마이닝 기술이나 빅데이터와 같은 연구에서 사용되는 알고리즘의 성능 저하와 연구에 제약사항이 발생한다. 따라서 본 논문에서는 웹 크롤링을 통해 텍스트 데이터를 추출하고, 텍스트 마이닝과 오피니언 마이닝을 통해 의미부여 및 단어들에 대한 감정적 분류를 통한 문장의 오피니언 파악을 진행하고자 한다. 실험은 다음과 같이 3단계로 진행하였다. 첫째, 소셜 미디어에서 새로운 단어를 수집하여 수집된 단어는 긍정적이고 부정적인 학습을 받게 하였다. 둘째, 표준 문서를 사용하여 감정적 가치를 도출하고 검증하기 위해 TF-IDF를 사용하여 데이터의 감정적 가치를 측정하기 위해 명사 빈도수를 측정한다. 신조어와 마찬가지로 분류된 감정적 가치가 적용되어 감정이 표준 언어 문서로 분류되는지 확인하였다. 마지막으로, 새로 합성된 단어와 표준 감정적 가치의 조합을 사용하여 장비 기술의 비교분석을 수행하였다.

기계학습에 기초한 국내 학술지 논문의 자동분류에 관한 연구 (An Analytical Study on Automatic Classification of Domestic Journal articles Based on Machine Learning)

  • 김판준
    • 정보관리학회지
    • /
    • 제35권2호
    • /
    • pp.37-62
    • /
    • 2018
  • 문헌정보학 분야의 국내 학술지 논문으로 구성된 문헌집합을 대상으로 기계학습에 기초한 자동분류의 성능에 영향을 미치는 요소들을 검토하였다. 특히, "정보관리학회지"에 수록된 논문에 주제 범주를 자동 할당하는 분류 성능 측면에서 용어 가중치부여 기법, 학습집합 크기, 분류 알고리즘, 범주 할당 방법 등 주요 요소들의 특성을 다각적인 실험을 통해 살펴보았다. 결과적으로 분류 환경 및 문헌집합의 특성에 따라 각 요소를 적절하게 적용하는 것이 효과적이며, 보다 단순한 모델의 사용으로 상당히 좋은 수준의 성능을 도출할 수 있었다. 또한, 국내 학술지 논문의 분류는 특정 논문에 하나 이상의 범주를 할당하는 복수-범주 분류(multi-label classification)가 실제 환경에 부합한다고 할 수 있다. 따라서 이러한 환경을 고려하여 단순하고 빠른 분류 알고리즘과 소규모의 학습집합을 사용하는 최적의 분류 모델을 제안하였다.

메타 태그를 이용한 자동 웹페이지 분류 시스템 (An Automatic Web Page Classification System Using Meta-Tag)

  • 김상일;김화성
    • 한국통신학회논문지
    • /
    • 제38B권4호
    • /
    • pp.291-297
    • /
    • 2013
  • 최근 월드 와이드 웹(World Wide Web)의 사용이 폭발적으로 증가함에 따라 다양한 정보를 포함하고 있는 웹 페이지들의 양도 엄청나게 증가 하였다. 따라서 웹상에 존재 하고 있는 웹페이지들에 대한 접근을 용이하게 하고, 그룹화를 통한 검색을 가능하게 하기 위해 웹 페이지 분류의 필요성이 대두 되고 있다. 웹 페이지 분류는 기존의 웹 상에 산재 되어 있는 웹페이지들을 비슷한 문서 유형 또는 같은 키워드를 사용하는 문서들의 묶음으로 구분하는 작업을 의미하며, 웹 페이지 분류 기술은 웹페이지 검색, 그룹 검색, 메일 필터링 등의 분야에 응용될 수 있는 기술이다. 하지만 웹상에 존재하는 웹페이지들을 사람이 수동적으로 분류하는 방법으로는 현재 월드 와이드 웹에 존재하는 엄청난 양의 웹페이지들을 처리할 수 없으며, 자동적인 분류 방법 역시 서로 다른 형태로 작성된 웹페이지들을 정확하게 분류할 수 없다는 문제로 인해 한계를 보이고 있다. 본 논문에서는 서로 다른 형태로 작성된 웹 문서들에 대한 부정확한 분류 문제를 해결하기위해 웹페이지에 존재하는 메타 정보를 획득하여 자동적으로 분류하는 메타 태그기반의 자동화된 웹페이지 분류 시스템을 제안하였다.

앙상블 베이지안망에 의한 유전자발현데이터 분류 (Classification of Gene Expression Data by Ensemble of Bayesian Networks)

  • 황규백;장정호;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.434-436
    • /
    • 2003
  • DNA칩 기술로 얻어지는 유전자발현데이터(gene expression data)는 생채 조직이나 세포의 수천개에 달하는 유전자의 발현량(expression level)을 측정한 것으로, 유전자발현양상(gene expression pattern)에 기반한 암 종류의 분류 등에 유용하다. 본 논문에서는 확률그래프모델(probabilistic graphical model)의 하나인 베이지안망(Bayesian network)을 발현데이터의 분류에 적응하며, 분류 성능을 높이기 위해 베이지안망의 앙상블(ensemble of Bayesian networks)을 구성한다. 실험은 실제 암 조직에서 추출된 유전자발현데이터에 대해 행해졌다 실험 결과, 앙상블 베이지안망의 분류 정확도는 단일 베이지안망보다 높았으며, naive Bayes 분류기, 신경망, support vector machine(SVM) 등과 대등한 성능을 보였다.

  • PDF

다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 문서 분류 (Web Documents Classification with Fuzzy Integration of Multiple Structure-Adaptive Self-Organizing Maps)

  • 김경중;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2003년도 봄 학술발표논문집 Vol.30 No.1 (B)
    • /
    • pp.371-373
    • /
    • 2003
  • 웹 문서를 분류하는 목적은 특정 주제별로 중요한 문서들을 구분하려는 것과 사용자의 선호도를 바탕으로 개인화를 하려는 것으로 나누어 볼 수 있다. 특히, 웹의 효율적인 탐색을 위해 사용자가 관심 있어 할 웹 문서를 분류하는 것은 중요하다 일반적으로 하나의 웹 문서는 특징 추출방법에 의해 문서 벡터로 표시되며 사용자의 선호여부나 주제번호를 클래스로 삼는다. 사용자가 선호도를 표시한 웹 문서를 사용하여 새로운 웹 문서의 선호 여부를 예측하기 위해 자기 구성지도(SOM)를 사용하면, 시각적으로 구조를 보여주어 데이터 사이의 관계를 효과적으로 이해할 수 있다. 그러나 SOM은 노드의 개수와 구조를 자동적으로 결정하지 못하는 단점이 있기 때문에, SOM의 장점을 활용하면서 자동적으로 구조를 결정하기 위해 구조적응 자기구성지도(SASOM)를 이용한다. 보다 나은 성능과 다양한 해석을 위해, 여러 개의 SASOM을 서로 다른 특징추출 방법을 이용하여 학습시킨 후 사용자가 주관적으로 분류기의 중요도를 결정할 수 있는 퍼지적분을 사용하여 결합하였다. UCI Syskill & Webert 데이터에 대한 실험결과 기존의 DT, MLP, naive Bayes 분류기 보다 향상된 성능을 보였다.

  • PDF

고품질 바이그램을 이용한 문서 범주화 성능 향상 (Improving Text Categorization with High Quality Bigrams)

  • 이찬도;탄체이드멩;왕유안팡
    • 정보처리학회논문지B
    • /
    • 제9B권4호
    • /
    • pp.415-420
    • /
    • 2002
  • 본 논문은 정보이익을 사용하여 고품질 바이그램을 생성하는 효율적 문서 범주화 알고리즘을 제안한다. 실험 결과 유니그램에 적은 수의 바이그램을 추가해서 나이브 베이즈 분류기에 적용했을 때 문서 범주화 성공률은 상당히 향상되었다. 결과 분석은 제안한 알고리즘이 양의 문서를 분류하는데 더 우수하다는 것을 제시한다.

자연스러운 범용 O2O 애플리케이션 사용자 인터페이스를 위한 상품 정보 자동 분류 (Automatic Classification of Product Data for Natural General-purpose O2O Application User Interface)

  • 이하나;임은수;조영인;윤영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 추계학술발표대회
    • /
    • pp.382-385
    • /
    • 2016
  • 본 논문은 현재 영역 별로 파편화된 여러 O2O(Online to Offline) 서비스들을 통합적으로 제공하기 위해 자연어를 통한 NUI(Natural User Interface)를 개발하여 사용자가 명시한 상품 정보의 항목을 자동으로 분류하고자 한다. 이를 위해 e-commerce 도메인 정보 학습에 적합한 나이브 베이즈 분류(Naive Bayes Classifier) 알고리즘을 사용한다. 학습에는 미국 e-commerce 사이트 Groupon의 상품 정보와 분류 체계를 사용하며, 학습 데이터의 특징을 분석하여 상품 정보에 특화된 학습 데이터 정제 및 TF-IDF(Term Frequency-Inverse Document Frequency)를 통한 단어 별 가중치를 적용하여 알고리즘의 정확도를 향상시킨다.