• Title/Summary/Keyword: Nail bending

Search Result 23, Processing Time 0.032 seconds

Bending Behavior of Nailed-Jointed Cross-Laminated Timber Loaded Perpendicular to Plane

  • Pang, Sung-Jun;Kim, Kwang-Mo;Park, Sun-Hyang;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.6
    • /
    • pp.728-736
    • /
    • 2017
  • In this study, the bending behavior of cross-laminated timber (CLT) connected by nails were investigated. Especially, the load-carrying capacity of the nail-jointed CLT under out-of-plane bending was predicted by the lateral resistance of the used nails. Three-layer nail-jointed CLT specimens and a nail connection were manufactured by 30 mm (thickness) ${\times}$ 100 mm (width) domestic species (Pinus koraiensis) laminas and Ø$3.15{\times}82mm$ nails using a nail-gun. Shear test for evaluating the nail lateral resistance and bending test for evaluating the load-carrying capacity of the nail-jointed CLT under out-of-plane bending were carried out. As a result, two lateral resistance of the used nail, the 5% fastener offset value and the maximum value, were 913 N and 1,534 N, respectively. The predicted load-carrying capacity of the nail-jointed CLT by the 5% offset nail lateral resistance was similar to the yield points on the actual load-displacement curve of the nail-jointed CLT specimens. Meanwhile, the nail-jointed CLT specimens were not failed until the tension failure of the bottom laminas occurred beyond the maximum lateral resistance of the nails. Thus, the measured maximum load carrying capacities of the nail-jointed CLT specimens, approximately 12,865 N, were higher than the predicted values, 7,986 N, by the maximum nail lateral resistance. This indicates that the predicted load-carrying capacity can be used for designing a structural unit such as floor, wall and roof able to support vertical loads in a viewpoint of predicting the actual capacities more safely.

Humeral intramedullary nail bending following trauma: a case report

  • Siem A. Willems;Alexander P. A. Greeven
    • Journal of Trauma and Injury
    • /
    • v.36 no.1
    • /
    • pp.65-69
    • /
    • 2023
  • The surgical approach for humeral implant failure can be challenging due to neurovascular anatomy and the possible necessity of osteosynthesis removal. We present a rare case of humeral nail bending after secondary trauma in a patient with preexistent nonunion of the humerus after intramedullary nailing. During revision surgery, the nail was sawed in half and the distal part was removed, followed by plate osteosynthesis with cable fixation to achieve absolute stability. The patient regained a full range of motion 1 year after surgery, and complete healing of the fracture was seen on imaging.

Numerical Analysis of the Nail Behavior Considering Resisting Bending Moment (휨 저항을 고려한 네일 거동에 대한 수치해석적 분석)

  • Jeon, Sang-Soo;Kim, Doo-Seop;Jang, Yang-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.85-96
    • /
    • 2007
  • The application of soil nailing method has increased because it provides easier construction, economic efficiency, and stability than existing support methods. The mechanical comprehension of the soil-nailing system has not been established and the resisting shear force and bending moment of the soil-nail have been disregarded for the design of soil-nailing system. The soil nail consists of cement associated with rebar and resists shear force and bending moment mobilized by applied loading or soil-self weight. In this study, the slope analysis in the consideration of the resisting shear force and bending moment of the nail has been performed using $FLAC^{2D}$, which is programed by the finite difference method.

A Study on Reinforcing Effect of Multi-Bar Spring Nailing (다철근 스프링 네일링 공법의 보강효과 검토에 관한 연구)

  • Lee, Choong-Ho;Jung, Young-Jin;Kim, Dong-Sik;Chae, Young-Su
    • Journal of the Society of Disaster Information
    • /
    • v.3 no.2
    • /
    • pp.147-169
    • /
    • 2007
  • This study investigates the reinforcing effects of the Multi-bar Spring nails with respect to the conventional Soil-nails in artificial slopes. Based on wide experience related to design and construction, soil nails have been widely applied to reinforce slope in the world. Multi-bar spring nails are one of the improved soil nailing methods. These method maximizes bending, shearing, pull-out resistance for those multi-nails, not unit nail, that are inserted in the borehole using special spacer at regular intervals. In addition, because cutting plane is confined effect resulting from a pressured plate at the end of the nails with compression spring equipment, slope stability is secured using MS-nailing method. Analyzing bending, pull-out, shearing condition of MS-nail, it was examined throughly elastic region, load transfer capacity, reinforcing effect on cutting plate of MS-nails. In addition, Pilot and laboratory tests, numerical analysis were carried out to verify the superiority of MS-nailing method. In case, MS nailing method is applied to reinforce artificial slope, it was analyzed that bending, pull-out, shearing resistance was increased more than existing nailing method was applied. In this study, it was shown that surface failure was more or less prevented using MS-nailing method, confining effect on cutting plane using spring stuck to flexible equipment.

  • PDF

Estimation of Yield strength and Slip Modulus for Helically Threaded Nail Connection (나선형 철선못 접합부의 항복내력 및 강성 예측)

  • Hwang, Kweonhwan;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.524-530
    • /
    • 2009
  • In the post-beam structure, the infilled light-frame construction provides most shear strengths. Shear properties of the light-frame structure can be estimated from the shear properties of nailed connection for the sheathings, and those of nailed connections can be done from nail bending strengths. For the basic study to predict the yield strength and the slip modulus of a nailed sheathing shear wall, those of a nailed joint were examined from nail bending strengths. To estimate shear properties of a nailed connection, referenced bearing strength and bearing constant for the wood members and the experimental nail bending strengths of the helically threaded nail were applied. The yield strength using the diameter at grooves instead of shank diameter was well coincided with the experimental value, but the slip modulus was estimated much smaller. The effective factors, specific gravity for the main member, withdrawal by nail head diameter to the side member, and embedment and moment at the nail head were considered, and further examinations are needed for the precise prediction of the nailed connections.

Modified FHWA Design Method Considering Bending Stiffness of Soil Nail (휨강성을 고려한 수정 FHWA 쏘일네일 설계법 제안)

  • Kim, Nak-Kyung;Jung, Jung-Hee;Ju, Yong-Sun;Kim, Sung-Kyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.1406-1416
    • /
    • 2008
  • Soil nailing is used as a method of slope stabilization and excavation support. The design method of soil nail are based on experience or assumption of interaction between soil and reinforcement. Most design methods simply considers the tension of reinforcement for analysis of slope stabilization. Soil nails interact with soils under combined loading of shear and tension. Jewell & Pedley(1990) suggested a design equation of shear force with bending stiffness and discussed that the magnitude of the maximum shear force is small in comparison with the maximum axal force. However, they have used a very conservative limiting bearing stress on nails. This paper discusses that the shear strength of soil nails should not be disregarded with proper bearing stresses on nails. The modified FHWA design method was proposed by considering shear forces on nails with bending stiffness.

  • PDF

Shear Resisting Effects of Protruded Nails by Pressure Grouting (가압식 돌기네일의 전단저항 효과)

  • Hong, Cheorhwa;Lee, Sangduk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.13-20
    • /
    • 2017
  • Soil nailing is ground reinforcement method using the shear strength of ground and the pullout shear resistance force of nail. It is mainly used for reinforcement of cut slopes, earth retaining structures and retaining walls, etc. It may be designed considering the pullout resistance of nail in the case of earth retaining structure and retaining wall, but it should be designed considering not only pullout resistance but also shear and bending resistance in the case of slope. However, conservative designs considering only pullout resistance are being done and most of the studies are about increasing pullout resistance by improving of material, shape and construction method of nail. Actually, Shear bending deformations occur centering on the active surface in ground reinforced with the nail. The grout with relatively low strength is destroyed and separated from the reinforcing material. As a result, the ground is collapsed while reducing the frictional resistance rapidly. Therefore, it is necessary to develop the method to increase the shear resistance while preventing separation of nail and grout body. In this study, an experimental study was conducted on new soil nailing method which can increase shear resistance by forming protrusions through pressurized grouting after installing a packer on the outside of deformed bar.

A Study on Application of Removable Soil Nail Walls (제거식 쏘일네일 벽체의 적용성에 관한 연구)

  • 김홍택;강인규;정성필;박사원;박시삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.481-488
    • /
    • 1999
  • Recently a removable soil nail is demanded due to problems beyond of economical and engineering purpose. In this study controlled displacement and controlled force field pull-out tests are carried out 7 times in order to evaluate short-term and long-term pull-out characteristics of the removable soil nail. For evaluating application of removable soil nailing system, bending tests of removable soil nails and tensile tests of fixed sockets are carried out. In the removable soil nailing system, the predicted horizontal displacements from FLAC-2D are also compared with the field measurements occurred in stepwise excavation. And approach for the stability analysis of removable soil nailing system after removed is proposed.

  • PDF

The Effect of Internal Nail-holes on the Bending Strength of Particle Board (못접합에 의한 내부천공이 삭편판(PB)의 휨강도에 미치는 영향)

  • So, Won-Tek
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.3
    • /
    • pp.211-218
    • /
    • 2008
  • This experiment was carried out to investigate the effect of internal holes on the bending strength of PB. The diameters of holes are 0mm to 13mm. The locations of holes are 1/8 to 4/5 point horizontally from sample end and are 1/5 to 4/5 vertically from sample surface, the numbers of holes are 1 to 4 pcs. In the size of internal holes, the bending strengths of PB were decreased significantly with the increase of diameter of holes, and the relationship between diameters(D) of holes and bending strength (${\sigma}_b$) of PB was ${\sigma}_b=-11D+168.8$ ($r^2=-0.99^{**}$). The effects of hole-locations and hole-numbers on the bending strengths of PB were large. and so they should be considered as major factors for the jointing design of PB.

  • PDF

Mechanical Properties of the Oriented Strand Board (OSB) Distributed in the Korean Market

  • Eun-Chang KANG;Min LEE;Sang-Min LEE;Se-Hwi PARK
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.253-269
    • /
    • 2023
  • Oriented strand board (OSB) distributed in Korea was collected, and its mechanical properties were investigated according to the International Organization for Standardization (ISO), Japanese Industrial Standards, and Korean Design Standard. Ten types of OSBs were collected, including six types for walls and others for floors. The thickness swelling, moisture content, and density of each product satisfied the ISO standards. All products showed lower formaldehyde emission values than those of the SE0 grade. The internal bonding strengths of all products, except products B, H, and I, met the ISO standards. However, products A, B, C, F, and H did not satisfy the thickness swelling standard of the load-bearing OSB for use in dry conditions. Products D and G showed heavy duty load-bearing OSB for use in humid conditions in terms of internal bonding and bending strength after boiling. In the nail head pull-through force and lateral nail resistance tests, all products met the standards. In terms of the structural bending performance (four points), the six types of OSBs for walls satisfied the standard for bending strength and modulus of elasticity. All the products for flooring met the standard for bending strength but, except for product G, the products did not meet the standard for modulus of elasticity. Although the results of this study cannot represent the performance of all imported OSBs, considering the above results, the water resistance performance of seven types of OSB products did not meet the standard, and 10 types of products did not match the labeling grades.