• Title/Summary/Keyword: Naeseong River

Search Result 21, Processing Time 0.021 seconds

Altitude Changes of Riverbedsin Naeseong River Before and After Yeongju Dam Construction (영주댐 건설 전후 내성천의 하상 고도 변화)

  • Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.1
    • /
    • pp.13-24
    • /
    • 2017
  • This study analyzes altitude changes of riverbed at 6 bridges in the upper and lower reaches of Yeongju Dam in Naeseong River, from 2009 to 2016 just before and after the dam construction. For 5 years from November 2010 to December 2015 when the dam was under construction, approximately 0.091m of the riverbed altitude in average more than twice before the dam construction was lowered, because of the effects of riverbed excavation for riverside maintenance in the upper reaches and transport limitation of flow and sediment by the dam in the lower reaches. Between November 2009 and December 2016 when the dam was in pre-construction and post-construction stages, respectively, the most sites in this study in the upper and lower reaches showed lowering in the riverbed altitudes. On the other hand, the riverbed around Hoeryongpo closed to the river mouth seems to be influenced by channel changes in Nakdong River rather than by the dam construction.

Analysis of the Changes of the Vegetated Area in an Unregulated River and Their Underlying Causes: A Case Study on the Naeseong Stream

  • Lee, Chanjoo;Kim, Donggu
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.229-245
    • /
    • 2018
  • This study aims to investigate the changes in the riparian vegetated area in the Naeseong stream, an unregulated river, in order to analyze the main factors leading to these changes. For this purpose, the land surface cover in the channel area of the Naeseong stream was classified into 9 categories using past aerial photographs collected between 1970 and 2016, which recorded the long-term changes of the Naeseong stream. The increase or decrease in the vegetated area was calculated for each category using a pair of before and after images. The changes in the vegetated area were divided into 6 periods: the unvegetated channel period (1970 - 1980), the first rapid increase (1980 - 1986), the period of decrease due to flood (1986 - 1988), the period of repetitive man-induced disturbance and vegetation increase (1988 - 2008), the period of gradual vegetation increase (2008 - 2013), and the period of second rapid increase (2013 - 2016). Multiple regression analysis was performed using independent variables representing hydrology, climate, and geomorphology. The major variables found to be involved in the changes in the vegetated area of the Naeseong stream were the discharge during June - July, channel width, and temperature during April - June. Among the three variables, discharge and temperature were respectively the main independent variables in the downstream and the upstream reaches as per a single variable model. Channel width was the variable that distinguished the upstream and downstream reaches of the stream. The implication of the long-term increase in the vegetated area in the Naeseong stream was discussed based on the result of this study.

Study on physical habitat suitability of Gobiobotia naktongensis in Naeseong Stream according to change of bed grain size (내성천 하상 입경 변화에 따른 흰수마자의 물리 서식 적합도 분석)

  • Lee, Dong Yeol;Park, Jae Hyun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.9
    • /
    • pp.553-562
    • /
    • 2023
  • The Gobiobotia naktongensis is a species endemic to Korea, and it has recently been designated as a class I endangered species of freshwater fish. Naeseong Stream, one of the tributaries of the Nakdong River, where the Gobiobotia naktongensis was first discovered, provided an optimal habitat for the Gobiobotia naktongensis in the past with fine sand beds and riffle. Currently, due to the construction of Yeongju Dam and the excessive dredging of river channels by the local government, the riverbed armoring in the downstream area of the dam is undergoing rapid changes, and as a result, the habitat environment of the Gobiobotia naktongensis is deteriorating. In this study, the variations of the habitat suitability of the Gobiobotia naktongensis due to the change in the riverbed grain size of the Naeseong Stream were analyzed based on the WUA (weight usable area) using the physical habitat model, River2D. The study domain is the reach from Seoktap Bridge to Hoeryong Bridge downstream of Yeongju Dam. The change in riverbed grain size was analyzed using D50 acquired in 2010 and 2020, respectively. The substrate grain size of Naeseong Stream in 2020 was thicker than that in 2010, and the riverbed coarsening phenomenon was evident overall. As a result of the River2D analysis, the area in which the Gobiobotia naktongensis could inhabit was only about 0.75% in 2010 compared to the entire area of the flow, and even this decreased to 0.55% in 2020 due to riverbed armoring.

Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I))

  • Lee, Chanjoo;Kim, Dong Gu;Ji, Un;Kim, Jisung
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.23-33
    • /
    • 2019
  • Naeseong Stream is a sand-bed river that flows through the northern area of Gyeongbuk province. It is characterized by dynamic sandy bedforms developed in response to the seasonal hydrological fluctuation and by its unique riverine landscape called "white river." However, changes including construction of Yeongju Dam from 2010 and the extensive vegetation establishment around 2015 occurred along the Naeseong Stream. This paper aims to analyze climate, hydrology, and water quality as factors and to examine the possibility of channel changes accordingly. The second least precipitation during the last 60 years happened in 2015, which led to the lowest peak discharge in 50 years. The sediment characteristics of Naeseong Stream were not significantly different along the upstream and downstream reaches, but it was confirmed that annual minimum water level of the stream decreased continuously regardless of the dam construction. This suggests that intermittent drought and change in water quality are likely to provide favorable conditions for riparian vegetation establishment and the resulting physical changes have affected riverbed degradation. Therefore, it is necessary to conduct diversified monitoring in connection with river vegetation change in order to analyze the causes of river changes.

Influence Analysis for Natural River Bed with Dam Construction (댐 건설이 하류하천 하상에 미치는 영향 분석)

  • Choo, Tai Ho;Chae, Soo Kwon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.715-723
    • /
    • 2012
  • The Hoelyongpo in the Naeseong River as tributary basin of the Nakdong River is broadly well-known a tourist attraction, which is made of sandy beach, and is called "Island of Inland". But Construction of the Dam was planned at upstream of river. In other words, an influx of sediment is blocked from upstream of river. In this situation, through sediment discharge coming from tributary of the Naeseong river, the whether to go ahead of sand beach of the Hoelyongpo is analyzed by using 1-D and 2-D model. The sediment discharge is estimated through ratio raw with basin area, and the instream flow requirement of river coming from dam and the flow rate and sediment coming from tributary are inputted for model. The 1-D model uses HEC-6 and the 2-D model uses SMS(RMA2 and SED2D). The analysis using the HEC-6 is performed from cross section data 10 year ago to the present cross section. Consequently, Yang equation presenting similar result to the present cross section data is determined, using this, the prediction is conducted for the cross section after 20 years. The 2-D analysis is conducted for the present cross section data. The value of distinction between a deposition and erosion with the results presented in the 1, 2-D models is occur, however, the appearance between the deposition and the erosion is similar.

Assessment of Biological Water Quality Using Epilithic Diatoms in the Upper Region of Nakdong River (낙동강 상류 수계에서 부착돌말류를 이용한 생물학적 수질 평가)

  • Choi, Jaesin;Chae, Hyunsik;Kim, Han-Soon
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.2
    • /
    • pp.169-182
    • /
    • 2019
  • This study assessed biological water quality using epilithic diatoms in the Yeong river, Naeseong stream and Wi stream in the upper region of the Nakdong river from May to October 2016. Epilithic diatoms were not mobile, so they could reflect long-term water quality. The sampled epilithic diatoms were identified a total 158 taxa which were composed to 2 orders, 3 suborders, 8 families, 34 genera, 143 species and 15 varieties. Dominant species were Achnanthes convergens and Achnanthes minutissima at Yeong river, Nitzschia inconspicua at Naeseong stream, and Achnanthes minutissima, Cocconeis placentula var. lineata and Navicula minima at Wi stream. As a result of the CCA, Electrical conductivity, total nitrogen and total phosphorus were important factors determining the diatom species composition in the upper region of the Nakdong river. The correlation between diatom indices (DAIpo & TDI) measured to be high in the correlation coefficient (0.87) from the result of correlation analysis. In the result of the assessment of biological water quality using DAIpo and TDI, Yeong river was rated as class A at most sites. Naeseong stream was rated as class C to D at all sites except for N1 which was rated as Class A. Wi stream was rated as class B to C for DAIpo of W1, and TDI was rated as class D. The assessment of biological water quality at this site showed inferior TDI result compared to that of DAIpo. DAIpo and TDI of W2 were rated as class A to D, and the water quality has changed a lot. W3 and W4 were mostly rated as class B and C respectively.

Analysis of changes in cross section and flow rate due to vegetation establishment in Naeseong stream (내성천 하도 내 식생활착에 의한 단면 및 유량변화 분석)

  • Lee, Tae Hee;Kim, Su Hong
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.3
    • /
    • pp.203-215
    • /
    • 2021
  • In the present study, hydrologic data and topographical data from 2010 to 2019 were collected from three gauging stations placed in the watershed of Naeseong stream to determine changes and rates of changes in rainfall, water level & mean velocity, and water level & discharge, together with changes in rates of erosion and deposition at cross-sections of the river. Besides, effects of regulated and non-regulated rivers according to the presence of artificial regulation of flow rate of the river via artificial structure located at Seo stream (Yeongju si (Wolhogyo) station), the tributary free from construction of dams, were compared and analyzed. Results of analyses conducted in the present study revealed vegetational establishment and landforming due to increasing area of vegetational sandbar evolved in the flood plain (intermediate- or high- water level) by the drought sustained from 2013 to 2015. Continuous erosion of river bed was appeared because of narrowed flow area with low water level and increased velocity and tractive force on river bed.

Application study of random forest method based on Sentinel-2 imagery for surface cover classification in rivers - A case of Naeseong Stream - (하천 내 지표 피복 분류를 위한 Sentinel-2 영상 기반 랜덤 포레스트 기법의 적용성 연구 - 내성천을 사례로 -)

  • An, Seonggi;Lee, Chanjoo;Kim, Yongmin;Choi, Hun
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.5
    • /
    • pp.321-332
    • /
    • 2024
  • Understanding the status of surface cover in riparian zones is essential for river management and flood disaster prevention. Traditional survey methods rely on expert interpretation of vegetation through vegetation mapping or indices. However, these methods are limited by their ability to accurately reflect dynamically changing river environments. Against this backdrop, this study utilized satellite imagery to apply the Random Forest method to assess the distribution of vegetation in rivers over multiple years, focusing on the Naeseong Stream as a case study. Remote sensing data from Sentinel-2 imagery were combined with ground truth data from the Naeseong Stream surface cover in 2016. The Random Forest machine learning algorithm was used to extract and train 1,000 samples per surface cover from ten predetermined sampling areas, followed by validation. A sensitivity analysis, annual surface cover analysis, and accuracy assessment were conducted to evaluate their applicability. The results showed an accuracy of 85.1% based on the validation data. Sensitivity analysis indicated the highest efficiency in 30 trees, 800 samples, and the downstream river section. Surface cover analysis accurately reflects the actual river environment. The accuracy analysis identified 14.9% boundary and internal errors, with high accuracy observed in six categories, excluding scattered and herbaceous vegetation. Although this study focused on a single river, applying the surface cover classification method to multiple rivers is necessary to obtain more accurate and comprehensive data.

A Study on Estimation by Depth Integrating Method of Sediment Discharge (수심적분법에 의한 유사량 추정연구)

  • 서승덕;김활곤;우효섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF

Riparian Vegetation Expansion Due to the Change of Rainfall Pattern and Water Level in the River (강우 발생 패턴변화와 하천 수위 변화가 하천식생 발생에 미치는 영향)

  • Kim, Won;Kim, Sinae
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.238-247
    • /
    • 2020
  • This study aims to examine the causes of the rapid expansion of riparian vegetation in river channels in recent years. Accordingly, the changes in the monthly rainfall were analyzed at 19 locations over the period of 1984 to 2018. Moreover, the changes in the water levels of the target river sections of Seom River, Cheongmi River, and Naeseong River were analyzed. The results showed that rainfall increased by 30% in April and decreased by up to 49% in the May-September period since 2012. Between 2012 and 2018, when rainfall decreased, the inundation time of the floodplains of the target rivers decreased considerably. The floodplains of Seom River and Cheongmi River were not inundated since 2012 and 2013, respectively. In the case of Naeseong River, the inundation time of the low-water channel drastically decreased since 2013, and there was no inundation in 2015. Consequently, riparian vegetation settled rapidly on the floodplain without any disturbance and continued to expand. The settling and expansion of riparian vegetation reduce the flood capacity of the river channel and can also lead to the loss of the water ecosystem due to terrestrialization.