• Title/Summary/Keyword: Na_2CO_3$

Search Result 1,770, Processing Time 0.035 seconds

Direct synthesis of Na-kenyaite from amorphous silica (무정형 실리카로부터 Na-kenyaite의 직접합성)

  • 권오윤;박경원;백우현
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.70-73
    • /
    • 1999
  • Amorphous silica was hydrothermally reacted for 48~120h at $170~180^{\circ}C$ in molar ratios of $SiO_{2}/(NaOH+Na_{2}CO_{3})=2~20\;and\;H_{2}O/(NaOH+Na_{2}CO_{3})=200~250$. Na-kenyaite nuclei were formed directly from amorphous silica without formation of Na-magadiite nuclei in wide range with $SiO_{2}/(NaOH+Na_{2}CO_{3})=3~20$. Above $SiO_{2}/(NaOH+Na_{2}CO_{3})=10$, Na-kenyaite always produced with a residual amorphous silica. Well-crystallized Na-kenyaite without residual amorphous silica were obtained in the range of $SiO_{2}/(NaOH+Na_{2}CO_{3})=3~10$. Morphology of Na-kenyaite exhibited that a large spherical and loosely packed aggregates changed into the smaller and individual platelets according to increase of reaction time.

  • PDF

Phase Transformation of Coal Tailing of Beneficiation with the Addition of Na2CO3 at High Temperature (Na2CO3의 첨가에 따른 석탄 선탄 폐석의 소결 상변화 연구)

  • YOU, Kwangsuk
    • Resources Recycling
    • /
    • v.29 no.6
    • /
    • pp.73-78
    • /
    • 2020
  • To use a tailing obtained from coal beneficiation as a raw material for glass material, the behaviors of phase transformation of the tailing was investigated according to sintered temperature with the addition of Na2CO3. As a result of the experiment, mullite was formed at 700~1,100 ℃, and the mullite and the cristobalite just only existed at 1,450 ℃. The glassification ratio of the coal tailing was to be 97.9 wt.% at 1,450 ℃ with the addition of Na2CO3 to tailing weight ratios of 10 wt.%. However, in the case of sample of coal tailing with 20 wt.% Na2CO3 added, nepheline(Na2O·Al2O3·2SiO2) was produced during the re-sintering(2nd sintering) at 1,100 ℃. From the results, the suitable addition amount of Na2CO3 for glassification of coal tailing was found around 10 wt.%.

Swelling Indexes and Relevant Removal of Cd and Pb of the Na-bentonite activated with Na2CO3 and NaHCO3 (Na2CO3와 NaHCO3로 활성화한 Na-벤토나이트의 팽창특성과 Cd와 Pb의 상대적 등온흡착곡선)

  • Chung, Doug-Young;Yang, Jae E.;Oh, Taek-G.;Lee, Kyo-S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.1
    • /
    • pp.64-70
    • /
    • 2007
  • In this experiment we transformed the Ca-bentonite into Na-bentonite with two inorganic Na-chemicals under different temperatures. These two Na-chemicals were selected among five different Na-chemicals which carries Na as cation. The swelling capacity of the Na chemical-treated bentonite was increased with increasing Na concentration, while the maximum concentration of Na solution decreased with increasing temperature. $Na_2CO_3$ was most effective in exchanging Ca ions and resulting in the highest swelling index among the Na-chemicals. The swelling index was significantly increased with increasing temperature to $100^{\circ}C$. But the equilibration time reversely affected the swelling index due to a rapid increase in evaporation of water. Within same amount of Na treatment SI slightly decreased not only with increasing contacting time but also with increasing temperature. The adsorption for the transformed Na-bentonite was increased with increasing equilibrium concentrations of Pb and Cd ions for all the activated Na-B and indigenous Ca-B and Na-B while the adsorbability of $Pb^{2+}$ onto each Na-B sample is more than that of $Cd^{2+}$. And the maximum adsorption capacity sequence of Na-B samples for Pb and Cd has been found to be 5 % $Na_2CO_3.$ - 5 % $NaHCO_3$ > 3 % $NaHCO_3$ > 3 % $Na_2CO_3$ > 1 % $NaHCO_3$ > 1 % $Na_2CO_3$ > indigenous Na-B > indigenous Ca-B, showing that there are contradictory results about the relationship of cation adsorption to CEC.

Determination of NaOH, $Na_2CO_3$ and $Na_2S$ Concentration in a Naphtha Cracking Process by FT-NIR Spectroscopy (FT-NIR를 이용한 Naphtha Cracking 공정중 NaOH, $Na_2CO_3$$Na_2S$ 정량분석)

  • Jang, Mijin;Kim, Hyunwook;Cho, Ilyoung
    • Analytical Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.448-451
    • /
    • 1998
  • The feasibility of using FT-NIR (Fourier Transform Near Infrared) spectrometer to measure NaOH, $Na_2CO_3$ and $Na_2S$ concentration in a naphtha cracking process, and an outline of the method development to identify spectral feature of the hydroxide whose band is overlapped by a strong water absorption were demonstrated. For measuring NaOH, $Na_2CO_3$ and $Na_2S$, FT-NIR spectrometer is a rapid and possible alternative to the current titration method with a standard deviation of 0.1.

  • PDF

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho;Kwon, Mi-Sook;Lee, Kyu Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.187-194
    • /
    • 2020
  • Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents (나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거)

  • Bae, Jong-Soo;Park, Joo-Won;Kim, Jae-Ho;Lee, Jae-Goo;Kim, Younghun;Han, Choon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.646-650
    • /
    • 2009
  • Hydrocarbon gases generated from the gasification of waste could be converted into $CO_2$ and $H_2$ using reforming catalysts and then $CO_2$ was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for $CO_2$ removal, $Na_2CO_3$ was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of $Na_2CO_3$ loading improved adsorption of $CO_2$. Finally, the highest adsorption capacity per unit mass of $Na_2CO_3$ could be achieved when the loading of $Na_2CO_3$ reached up to 20wt%. When the content of $Na_2CO_3$ increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.

Zeolitification Characteristics of Coal Fly Ash by Amount of Na2CO3 Using the Fusion/Hydrothermal Method (용융/수열합성법으로부터 Na2CO3 첨가량에 따른 석탄비산재의 제올라이트화 특성)

  • Lee, Chang-Han
    • Journal of Environmental Science International
    • /
    • v.28 no.6
    • /
    • pp.553-559
    • /
    • 2019
  • In this study, zeolitic materials at $Na_2CO_3/CFA$ ratio of 0.6 - 1.8 were synthesized from coal fly ash from a thermal power plant using a fusion/hydrothermal method. The zeolitic materials were found to have cubic crystals structure and X-ray diffraction (XRD) peaks of Na-A zeolite by XRD and SEM analysis. When the zeolitic materials were synthesized from the coal fly ash, the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratios of 0.9-1.8 had the same location as the XRD peaks of commercial Na-A zeolite. The XRD peaks of the Na-A zeolite ($Na_{12}Al_{12}Si_{12}O_{48}27.4H_2O$) were confirmed in the $2{\theta}$ in the range of 7.18-34.18. However, it was also confirmed that peaks of $CaCO_3$, an impurity inhibiting synthesis of Na-A zeolite from CaO and $Na_2CO_3$ in the coal fly ash, occurred in the XRD peaks of the zeolitic materials at $Na_2CO_3/CFA$ ratio of 1.5-1.8. The crystallinities of the zeolitic materials tended to increase gradually within the $Na_2CO_3/CFA$ ratio range of 0.6-1.8.

Crystal Structure of Dehydrated Partially Cobalt(II)-Exchanged Zeolite X, $Co_{41}Na_{10}-X$ (부분적으로 $Co^{2+}$ 이온으로 치환된 제올라이트 X, $Co_{41}Na_{10}-X$를 탈수한 결정구조)

  • Jang, Se-Bok;Jeong, Mi-Suk;Han, Young-Wook;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.125-133
    • /
    • 1995
  • The crystal structure of dehydrated, partially Co(II)-exchanged zeolite X, stoichiometry Co2+Na+-X (Co41+Na10Si100Al92O384) per unit cell, has been determined from three-dimensional X-ray diffraction data gathered by counter methods. The structure was solved and refined in the cubic space group Fd3:α=24.544(1)Å at 21(1)℃. The crystal was prepared by ion exchange in a flowing stream using a solution 0.025 M each in Co(NO3)2 and Co(O2CCH3)2. The crystal was then dehydrated at 380℃ and 2×10-6 Torr for two days. The structure was refined to the final error indices, R1=0.059 and R2=0.046 with 211 reflections for which I > 3σ(I). Co2+ ions and Na+ ions are located at the four different crystallographic sites. Co2+ ions are located at two different sites of high occupancies. Sixteen Co2+ ions are located at the center of the double six-ring (site I; Co-O = 2.21(1)Å, O-Co-O = 90.0(4)°) and twenty-five Co2+ ions are located at site II in the supercage. Twenty-five Co2+ ions are recessed 0.09Å into the supercage from its three oxygen plane (Co-O = 2.05(1)Å, O-Co-O = 119.8(7)°). Na+ ions are located at two different sites of occupandies. Seven Na+ ions are located at site II in the supercage (Na-O = 2.29(1)Å, O-Na-O = 102(1)°). Three Na+ ions are statistically distribyted over site III, a 48-fold equipoint in the supercages on twofold axes (Na-O = 2.59(10)Å, O-Na-O = 69.0(3)°). Seven Na+ ions are recessed 1.02Å into the supercage from the three oxygen plane. It appears that Co2+ ions prefer sites I and II in order, and that Na+ ions occupy the remaining sites, II and III.

  • PDF

A Study on Vapour Explosion Caused by the Contact Between Molten Salt of Na$_2$CO$_3$-NaOH Mixture and water (Na$_2$CO$_3$-NaOH 혼합용융염과 물의 접촉에 의한 증기폭발에 관한 연구)

  • Mok, Yun-Soo;Chiaki Ogiso;Yoichi Uehara
    • Journal of the Korean Society of Safety
    • /
    • v.4 no.1
    • /
    • pp.41-46
    • /
    • 1989
  • Molten salt-water explosion caused by the contact between molten salt and water is one of vapour explosions. An experimental study of the vapour explosion, which occurs when the molten mixture of Na$_2$CO$_3$-NaOH and water come in contact was performed. The pressure wave generated in each composition Of molten mixtures was measured. The results obtained are as follows: 1) The vapour explosion didn't occur for a molten salt of 100%-Na$_2$CO$_3$- 2) For a molten salt of Na$_2$CO$_3$ 80%-NaOH 20% mixture, a small vapour explosion occured initially, and a large vapour explosion, which showed the largest pressure wave among the present experiments, occurred after an induced period. 3) For molten salt of Na$_2$CO$_3$60% - NaOH 40% mixture and Na$_2$CO$_3$ 40% - NaOH 60% mixture, the vapour explosion occurred near the water surface shortly after they come in contact with water. This explosion would be caused by fragmentation of the molten salts due to impulse generated when thee molten salts and water come in contact.

  • PDF

Removal CO2 Using Na2CO3, K2CO3 and Li2CO3 Impregnated Activated Carbon -Characteristics of CO2 Adsorption in Fixed Bed Reactor- (Na2CO3, K2CO3 및 Li2CO3 첨착활성탄을 이용한CO2 제거 -고정층 반응기에서의 CO2 흡착특성-)

  • Choi, Won-Joon;Jung, Jong-Hyeon
    • Journal of Environmental Health Sciences
    • /
    • v.34 no.3
    • /
    • pp.240-246
    • /
    • 2008
  • The purpose of this study was to gain basic information on the characteristics of $CO_2$ adsorption in relation to $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon in a Fixed Bed Reactor. From the results of this study the following conclusions were made: $Na_2CO_3$, $K_2CO_3$, $Li_2CO_3$-impregnated activated carbon had a longer breakthrough time and more enhanced adsorption capacity than activated carbon alone. When tested with isothermal adsorption and tested for $CO_2$ adsorption the amount of $CO_2$ adsorbed varied with temperature, $CO_2$ inlet concentration, gas flow rate, aspect ratio, etc. Based on the results, when Langmuir, Freundlich and Dubinin-Polanyi adsorption isotherms were used for linear regression of isothermal adsorption data, Langmuir adsorption isotherm was the most suitable. And, the optimum condition for $Na_2CO_3$ and $K_2CO_3$ impregnated activated carbon make-up was 1N and $Li_2CO_3$ was 0.1N. It could be concluded that adsorption capacity was decreased with adsorption temperature and increased gas concentration. When the aspect ratio (L/D) was varied 0.5, 1.0 and 2.0, the significant drop of adsorption amount was observed below 1.0 and breakthrough time was shortened with gas flow rate.