• Title/Summary/Keyword: NaI(Tl) Detector

Search Result 78, Processing Time 0.032 seconds

The radioactivity levels and beta dose rate assessment from dental ceramic materials in Egypt

  • Mohamed Hasabelnaby;Mohamed Y. Hanfi;Hany El-Gamal;Ahmed H. El Gindy;Mayeen Uddin Khandakerf;Ghada Salaheldin
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3898-3903
    • /
    • 2024
  • There is a lack of available data on the radioactivity levels of these materials, despite the potential risks they may pose to patients, dental technicians, and dentists. A total of forty samples were collected from different dental markets in Egypt. Using an NaI(Tl) detector, the gamma-ray spectrometer measured the activity levels of uranium-238, radium-226, thorium-232, and potassium-40. The findings revealed that the mean concentration of 238U (below the minimum detectable activity, MDA), 226Ra (135 ± 5 and 132 ± 5 Bq/kg), 232Th (187 ± 4 and 243 ± 8 Bq/kg), and 40K (1560 ± 52 and 2501 ± 89 Bq/kg) in feldspar and zirconia (ZrO2) dental ceramic samples, respectively, were all within the limits established by the International Organization for Standardization (ISO) and the European Commission (EC). The use of feldspar and zirconia dental ceramics to restore all teeth would result in an estimated maximum beta dose of 1.5 mGy/year to the oral tissue. The results suggest that there is no cause for concern regarding any additional beta dose to the oral cavity from the use of feldspar and zirconia dental ceramics.

Spectroscopic Properties of a Silicon Photomultiplier-based Ce:GAGG Scintillation Detector and Its Applicability for γ-ray Spectroscopy (감마선 분광분석을 위한 실리콘 광 증배소자 기반 Ce:GAGG 섬광검출기의 분광특성 연구)

  • Park, Hye Min;Kim, Jeong Ho;Kim, Dong Seong;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.73-78
    • /
    • 2015
  • In this study, a scintillation detector was fabricated using a silicon photomultiplier (SiPM) and a Ce:GAGG scintillator single crystal, and its spectroscopic properties were compared with those of commercially available LYSO and CsI:Tl scintillators using ${\gamma}$-ray spectroscopy. The energy resolutions of the self-produced scintillation detector composed of the scintillator single crystal (volume: $3{\times}3{\times}20mm^3$) and SiPM (Photosensitive area: $3{\times}3mm^2$) for standard ${\gamma}$-ray sources, such as $^{133}Ba$, $^{22}Na$, $^{137}Cs$ and $^{60}Co$ were measured and compared. As a result, the energy resolutions of the proposed Ce:GAGG scintillation detector for g-rays, as measured using its spectroscopic properties, were found to be 13.5% for $^{133}Ba$ 0.356 MeV, 6.9% for $^{22}Na$ 0.511 MeV, 5.8% for $^{137}Cs$ 0.662 MeV and 2.3% for $^{60}Co$ 1.33 MeV.

Calculation of Man-made Radiation Exposure Rate from NaI Spectrum (NaI 스펙트럼으로부터 인공방사선 조사선량의 계산)

  • Lee, M.S.
    • Journal of Radiation Protection and Research
    • /
    • v.26 no.2
    • /
    • pp.113-117
    • /
    • 2001
  • The energy band method for NaI spectrum calculates only the exposure rate due to natural radiation because it calculates exposure rate using energy spectrum of $1300{\sim}3000keV$. However, the total energy method includes in its calculation the exposure rate due to man-made radiation because it uses the energy spectrum of $150{\sim}3400keV$. Therefore, the resulting difference of extracting the exposure rate calculated by the energy band method from the exposure rate calculated by the total energy method is apparently the exposure rate due to man-made radiation. In this study, we measured the NaI spectrum during the period of significant changes of the exposure rate in the area without a man-made radiation. As the results, we found the exposure rates calculated by those two methods are equal within the statistical variation of ${\pm}0.3{\mu}R\;h^{-1}$. Consequently, if the difference between the exposure rates calculated by the two methods exists, it may be due to the man-made radiation exposure rate.

  • PDF

Effect of Coincidence Gamma-ray Spectroscopy to the Reduction of Background Spectrum

  • Kim, Taewook;Changsoo Yoou;Chongmook park;Kim, Byungtae
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.464-469
    • /
    • 1998
  • A coincidence gamma-ray spectroscopy method was applied to reduce the background radioactivity for measuring the activity of radioisotopes in a sample in the presence of environmental natural radioactivity. A HPGe detector was used for the coincident spectrum as a main detector and a NaI(Tl) scintillation detector for gating purposes as an associated detector. For coincidence spectroscopy the whole energy spectrum of associated detector was used instead of gate signals. The coincident events obtained from the gating spectrum was evaluated by a coincidence computer program in this study instead of timing circuit. In this work, the background of detection environment was reduced to factor 100 and peaks to be determined was reduced to factor 30 using the coincidence gamma-ray spectroscopy.

  • PDF

Assessment of Applicability of Portable HPGe Detector with In Situ Object Counting System based on Performance Evaluation of Thyroid Radiobioassays

  • Park, MinSeok;Kwon, Tae-Eun;Pak, Min Jung;Park, Se-Young;Ha, Wi-Ho;Jin, Young-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.2
    • /
    • pp.83-90
    • /
    • 2017
  • Background: Different cases exist in the measurement of thyroid radiobioassays owing to the individual characteristics of the subjects, especially the potential variation in the counting efficiency. An In situ Object Counting System (ISOCS) was developed to perform an efficiency calibration based on the Monte Carlo calculation, as an alternative to conventional calibration methods. The purpose of this study is to evaluate the applicability of ISOCS to thyroid radiobioassays by comparison with a conventional thyroid monitoring system. Materials and Methods: The efficiency calibration of a portable high-purity germanium (HPGe) detector was performed using ISOCS software. In contrast, the conventional efficiency calibration, which needed a radioactive material, was applied to a scintillator-based thyroid monitor. Four radioiodine samples that contained $^{125}I$ and $^{131}I$ in both aqueous solution and gel forms were measured to evaluate radioactivity in the thyroid. ANSI/HPS N13.30 performance criteria, which included the relative bias, relative precision, and root-mean-squared error, were applied to evaluate the performance of the measurement system. Results and Discussion: The portable HPGe detector could measure both radioiodines with ISOCS but the thyroid monitor could not measure $^{125}I$ because of the limited energy resolution of the NaI(Tl) scintillator. The $^{131}I$ results from both detectors agreed to within 5% with the certified results. Moreover, the $^{125}I$ results from the portable HPGe detector agreed to within 10% with the certified results. All measurement results complied with the ANSI/HPS N13.30 performance criteria. Conclusion: The results of the intercomparison program indicated the feasibility of applying ISOCS software to direct thyroid radiobioassays. The portable HPGe detector with ISOCS software can provide the convenience of efficiency calibration and higher energy resolution for identifying photopeaks, compared with a conventional thyroid monitor with a NaI(Tl) scintillator. The application of ISOCS software in a radiation emergency can improve the response in terms of internal contamination monitoring.

Large-volume and room-temperature gamma spectrometer for environmental radiation monitoring

  • Coulon, Romain;Dumazert, Jonathan;Tith, Tola;Rohee, Emmanuel;Boudergui, Karim
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1489-1494
    • /
    • 2017
  • The use of a room-temperature gamma spectrometer is an issue in environmental radiation monitoring. To monitor radionuclides released around a nuclear power plant, suitable instruments giving fast and reliable information are required. High-pressure xenon (HPXe) chambers have range of resolution and efficiency equivalent to those of other medium resolution detectors such as those using NaI(Tl), CdZnTe, and $LaBr_3:Ce$. An HPXe chamber could be a cost-effective alternative, assuming temperature stability and reliability. The CEA LIST actively studied and developed HPXe-based technology applied for environmental monitoring. Xenon purification and conditioning was performed. The design of a 4-L HPXe detector was performed to minimize the detector capacitance and the required power supply. Simulations were done with the MCNPX2.7 particle transport code to estimate the intrinsic efficiency of the HPXe detector. A behavioral study dealing with ballistic deficits and electronic noise will be utilized to provide perspective for further analysis.

Development of Imaging Gamma Probe Using the Position Sensitive PMTube (위치 민감형 광전자증배관을 이용한 영상용 감마프로브의 개발)

  • Bong, Jeong-Gyun;Kim, Hui-Jung;So, Su-Gil;Kim, Han-Myeong;Lee, Jong-Du;Gwon, Su-Il
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.1
    • /
    • pp.107-113
    • /
    • 1999
  • The purpose of this study was to develop a miniature imaging gamma probe with high performance that can detect small or residual tumors after surgery. Gamma probe detector system consists of NaI(Tl) scintillator, position sensitive photomultiplier tube (PSPMT), and collimator. PSPMT was optically coupled with 6.5 mm thick, 7.62 cm diameter of NaI(Tl) crystal and supplied with -1000V for high voltage. Parallel hexagonal hole collimator was manufactured for characteristics of 40-mm hole length, 1.3-mm hole diameter, and 0.22 mm septal thickness. Electronics consist of position and trigger signal readout systems. Position signals were obtained with summing, subtracting, and dividing circuit using preamplifer and amplifier. Trigger signals were obtained using summing amplifier, constant fraction discriminator, and gate and delay generator module with preamplifer. Data acquisition and processing were performed by Gamma-PF interface board inserted into pentium PC and PIP software. For imaging studies, flood and slit mask images were acquired using a point source. Two hole phantom images were also acquired with collimator. Intrinsic and system spatial resolutions were measured as 3.97 mm and 5.97 mm, respectively. In conclusion, Miniature gamma probe images based on the PSPMT showed good image quality, we conclude that the miniature imaging gamma probe was successfully developed and good image data were obtained. However, further studies will be required to optimize imaging characteristics.

  • PDF

Radioactive Nuclide Identification of a Fall-Out Sample in Korea (放射能 落塵의 核種檢出의 一例)

  • Kim, Chong-Kuk
    • Journal of the Korean Chemical Society
    • /
    • v.6 no.2
    • /
    • pp.155-157
    • /
    • 1962
  • A tiny dust found at the balcony of the Institute indicated about 8,0000 counts per minute by T.G.C.-2 Geiger-Muller tube (1.8mg/$cm^2$ window-thickness) at the distance of 2cm from the window. The main fission fragments, as identified by the present analysis, are 12.5day Ba-140 and 33.1 day Ce-141. The gamma energies were determined using $2"{\times}2"$ NaI(Tl) scintillation detector connected to RCL-256 channel pulse heigt analyzer. The beta energies were evaluated by Feather plot.

  • PDF

Development of Neutron, Gamma ray, X-ray Radiation Measurement and Integrated Control System (중성자, 감마선, 엑스선 방사선 측정 및 통합 제어 시스템 개발)

  • Ko, Tae-Young;Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.21 no.4
    • /
    • pp.408-411
    • /
    • 2017
  • In this paper, we propose an integrated control system that measures neutrons, gamma ray, and x-ray. The proposed system is able to monitor and control the data measured and analyzed on the remote or network, and can monitor and control the status of each part of the system remotely without remote control. The proposed system consists of a gamma ray/x-ray sensor part, a neutron sensor part, a main control embedded system part, a dedicated display device and GUI part, and a remote UI part. The gamma ray/x-ray sensor part measures gamma ray and x-ray of low level by using NaI(Tl) scintillation detector. The neutron sensor part measures neutrons using Proportional Counter Detector(low-level neutron) and Ion Chamber Type Detector(high-level neutron). The main control embedded system part detects radiation, samples it in seconds, and converts it into radiation dose for accumulated pulse and current values. The dedicated display device and the GUI part output the radiation measurement result and the converted radiation amount and radiation amount measurement value and provide the user with the control condition setting and the calibration function for the detection part. The remote UI unit collects and stores the measured values and transmits them to the remote monitoring system. In order to evaluate the performance of the proposed system, the measurement uncertainty of the neutron detector was measured to less than ${\pm}8.2%$ and the gamma ray and x-ray detector had the uncertainty of less than 7.5%. It was confirmed that the normal operation was not less than ${\pm}15$ percent of the international standard.

Field tests of the radiation detectors for environmental radiation monitoring around KORI nuclear power plants (고리원자력 주변 환경방사선 감시를 위한 방사선 측정기의 현장 성능 시험)

  • 최성수;신대용;조규성;하달규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1371-1374
    • /
    • 1997
  • We had developed the on-line environmental monitoring system which has installed around Kori Nuclear Power Plants and will be taken the place of the existing system. The system consists of a main computer and 11 sets of radiation monitoring post equipments. Nal(Tl) scintillation detectro was adopted in addition to ion-chamber detector and implemented with DCU(Dose Conversion Unit) and SCA(Single Channel Analyzer). Compared with the existing system, it has revised feature in the radiation measurements which are detection of artificial radioactivity and 2-ways of the radiatiion detectors. The field test trsults show that the developed radiation detecting equipments can measure environmental radiation withn 5.0% of the theoretical value.

  • PDF