In this study, 3" × 3" NaI(Tl) detector, which is widely used in gamma spectroscopy, was modeled with FLUKA code, and calculations required to determine the detector's energy resolution were reported. Photon beams with isotropic distribution with 59, 81, 302, 356, 511, 662, 835, 1173, 1275, and 1332 keV energy were used as radiation sources. The photon pulse height distribution of the NaI(Tl) without influence of its energy resolution obtained with FLUKA code has been converted into a real NaI(Tl) response function, using the necessary conversion process. The photon pulse height distribution simulated in the conversion process was analyzed using the ROOT data analysis framework. The statistical errors of the simulated data were found in the range of 0.2-1.1%. When the results, obtained with FLUKA and ROOT, are compared with the literature data, it is seen that the results are in good agreement with them. Thus, the applicability of this procedure has been demonstrated for the other energy values mentioned.
he scintillation detector having $BaF^2$ crystal with 3.6cm dia${\times}$2.0 cm thick was provided. The energy and timing characteristics were measured and compared with NaI(Tl) scintillation detectors, which widely used in unclear medicine. In order to measure the energy spectrum, the radioactive sources used were $^{22}Na,\;^{54}Mn,\;^{57}Co,\;^{137}Cs$ and the source to detector distance was 7cm. For the timing characteristic, NaI(Tl)(1" ${\times}$ 1")-$BaF^2$ and NaI(Tl)(3" ${\times}$ 3")-$BaF^2$ timing coincidence systems were prepared and the used source was $^{22}Na$ emitting 511keV annihilation photons. For the 511keV gamma-ray emitted from $^{22}Na$, It was revealed that the timing response of the $BaF^2$ detector was faster than NaI(Tl)(1" ${\times}$ 1") and NaI(Tl)(3" ${\times}$ 3") detector used in this experimental investigation. The energy characteristics of the $BaF^2$ detector had a good values for about 500keV energy range.
Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
Nuclear Engineering and Technology
/
v.53
no.10
/
pp.3421-3430
/
2021
Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).
Ji, Young-Yong;Lee, Wanno;Choi, Sang-Do;Chung, Kun Ho;Kang, Mun Ja;Choi, Geun-Sik
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.11
no.3
/
pp.245-251
/
2013
The energy band and the G-factor method were compared to determine the exposure rate from the measured spectrum using a NaI(Tl) scintillation detector. First, G-factors of a 3"${\Phi}X3$" NaI(Tl) detector mounted to a EFRD 3300, which means the environmental radiation monitor, in Korea Atomic Energy Research Institute (KAERI) were calculated for several directions of incident photons through the MCNP modeling, and the optimum G-factor applicable to that monitor was then determined by comparing the results both the energy band method and the G-factor method. The results for these spectrometric determinations were also compared with the dose rate from a HPIC radiation monitor around a EFRD 3300. The measured value at the EFRD 3300 based on a 3"${\Phi}X3$" NaI(Tl) detector was $7.7{\mu}R/h$ and its difference was shown about $3{\mu}R/h$, when compared with the results from a HPIC radiation moditor. Since a HPIC is known to be able to measure cosmic rays with the relatively high energy, the difference between them was caused by cosmic rays which were not detected in a 3"${\Phi}X3$" NaI(Tl) detector.
The computation of the solid angle and the detector efficiency is considering to be one of the most important factors during the measuring process for the radioactivity, especially the cylindrical γ-ray NaI(Tl) detectors nowadays have applications in several fields such as industry, hazardous for health, the gamma-ray radiation detectors grow to be the main essential instruments in radiation protection sector. In the present work, a generic numerical simulation method (NSM) for calculating the efficiency of the γ-ray spectrometry setup is established. The formulas are suitable for any type of source-to-detector shape and can be valuable to determine the full-energy peak and the total efficiencies and P/T ratio of cylindrical γ-ray NaI(Tl) detector setup concerning the truncated conical radioactive source. This methodology is based on estimate the path length of γ-ray radiation inside the detector active medium, inside the source itself, and the self-attenuation correction factors, which typically use to correct the sample attenuation of the original geometry source. The calculations can be completed in general by using extra reasonable and complicate analytical and numerical techniques than the standard models; especially the effective solid angle, and the detector efficiency have to be calculated in case of the truncated conical radioactive source studied condition. Moreover, the (NSM) can be used for the straight calculations of the γ-ray detector efficiency after the computation of improvement that need in the case of γ-γ coincidence summing (CS). The (NSM) confirmation of the development created by the efficiency transfer method has been achieved by comparing the results of the measuring truncated conical radioactive source with certified nuclide activities with the γ-ray NaI(Tl) detector, and a good agreement was obtained after corrections of (CS). The methodology can be unlimited to find the theoretical efficiencies and modifications equivalent to any geometry by essential sufficiently the physical selective considered situation.
A spectrum-exposure rate conversion operator G(E) for a portable HPGe detector used for field environmental radiation survey was theoretically developed on the basis of a space distribution function of gamma flux emitted from a disk source and an areal efficiency of the detector. The radiation exposure rates measured using this G(E) and the portable HPGe. detector connected to a portable multichannel analyzer were compared with those measured by a 3' ${\phi}\;{\times}$3' NaI(Tl) scintillation detector with the reported G(E) and a pressurized ionization chamber. A comparison of the three results showed that the result obtained using the HPGe detector was lower than those determined using the NaI(Tl) detector and ionization chamber by 17% to 29%, The difference obtained is close to that reported in literature. The method developed here can be easily applicable to obtain a G(E) factor suitable to any detector for detecting the exposure rate of environmental gamma radiation, since the spectrum-exposure rate conversion operator can be calculated by a hand calculator.
Recently, a new sintered pellet-type LiF:Mg,Cu,Na,Si TL detector which has a high sensitivity and good reusability, named KLT-300(KAERI LiF:Mg,Cu,Na,Si TL detector), was developed by the variation of the dopants concentrations and the parameters of the preparation procedure at KAERI (Korea Atomic Energy Research Institute). In this study, the thermoluminescent characteristics of the newly developed TL detectors were investigated. The sensitivity of the TL detector was compared with that of the TLD-100 by light integration. The dose linearity of the detector was tested from $10^{-6}$ Gy up to 30 Gy. The dose response was very linear up to 10 Gy and a sublinear response was observed at higher doses. The energy response of the detector was studied for photon energies from 20 keV to 662 keV. The result shows that a maximum response of 1.004 at 53 keV and a minimum response of 0.825 at 20 keV were observed. The reproducibility study for the TL detector was also carried out. The coefficients of variation for each detector separately did not exceed 0.016, and for all the 10 detectors collectively was 0.0054. Lower limit of detection for the detector was investigated at 70 nGy by the Harshaw 4500 TLD Reader and the residual signal of the TL detector was found to be $0.57\%$.
NaI(Tl) scintillation materials are considered to be one of many materials that are used exclusively for γ-ray detection and spectroscopy. The gamma-ray spectrometer is not an easy-to-use device, and the accuracy of the numerical values must be carefully checked based on the rules of the calibration technique. Therefore, accurate information about the detection system and its effectiveness is of greater importance. The purpose of this study is to estimate, using an analytical-numerical formula (ANF), the purely geometric solid angle, geometric efficiency, and total efficiency of a cylindrical NaI(Tl) γ-ray detector with a side-through hole. This type of detector is ideal for scanning fuel rods and pipelines, as well as for performing radio-immunoassays. The study included the calculation of the complex solid angle, in combination with the use of various points like gamma sources, located axially and non-axially inside the through detector side hole, which can be applied in a hypothetical method for calibrating the facility. An extended γ-ray energy range, the detector, source dimensions, "source-to-detector" geometry inside the side-through hole, path lengths of γ-quanta photons crossing the facility, besides the photon average path length inside the detector medium itself, were studied and considered. This study is very important for an expanded future article where the radioactive point source can be replaced by a volume source located inside the side-trough hole of the detector, or by a radioactive pipeline passing through the well. The results provide a good and useful approach to a new generation of detectors that can be used for low-level radiation that needs to be measured efficiently.
Park, Su-Jin;Yu, A Ram;Kim, Yeseul;Lee, Young-Jin;Kim, Hee-Joung
Progress in Medical Physics
/
v.24
no.3
/
pp.162-170
/
2013
Dedicated single-photon emission computed tomography (SPECT) systems based on pixelated semiconductors are being developed for studying small animal models of human disease. To clarify the possibility of using a SPECT system with CdTe for a high resolution low-dose small animal imaging, we compared the quality of reconstructed images from pixelated CdTe detector to those from a small SPECT system with NaI(Tl). The CdTe detector was $44.8{\times}44.8$ mm and the pixels were $0.35{\times}0.35{\times}5$ mm. The intrinsic resolution of the detector was 0.35 mm, which is equal to the pixel size. GATE simulations were performed to assess the image quality of both SPECT systems. The spatial resolutions and sensitivities for both systems were evaluated using a 10 MBq $^{99m}Tc$ point source. The quantitative comparison with different injected dose was performed using a voxelized MOBY phantom, and the absorbed doses for each organ were evaluated. The spatial resolution of the SPECT with NaI(Tl) was about 1.54 mm FWHM, while that of the SPECT with a CdTe detector was about 1.32 mm FWHM at 30 mm. The sensitivity of NaI(Tl) based SPECT was 83 cps/MBq, while that of the CdTe detector based SPECT was 116 cps/MBq at 30 mm. The image statistics were evaluated by calculating the CNR of the image from both systems. When the injected activity for the striatum in the mouse brain was 160 Bq/voxel, the CNR of CdTe based SPECT was 2.30 while that of NaI(Tl) based SPECT was 1.85. The CNR of SPECT with CdTe was overall higher than that of the NaI(Tl) based SPECT. In addition, the absorbed dose was higher from SPECT with CdTe than those from NaI(Tl) based SPECT to acquire the same quantitative values. Our simulation results indicated that the SPECT with CdTe detector showed overall high performance compared to the SPECT with NaI(Tl). Even though the validation study is needed, the SPECT system with CdTe detector appeared to be feasible for high resolution low-dose small animal imaging.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.17
no.3
/
pp.321-328
/
2019
The detection performances of the NaI(Tl), $LaBr_3$(Ce) and $CeBr_3$ scintillation detectors, which can be used to rapidly evaluate the major artificial radionuclides deposited on the soil surface in a nuclear accident or radiological emergency, were compared. Detection performance was assessed by calculating the minimum detectable activity (MDA). The detection efficiency of each detector for artificial radionuclides was semi-empirically determined using mathematical modelling and point-like sources having certified radioactivity. The background gamma-ray energy spectrum for MDA evaluation was obtained from relatively wide and flat grassland, and the MDA values of each detector for the major artificial radionuclides that could be released in nuclear accidents were calculated. As a result, the relative MDA values of each detector regarding surface deposition distribution at normal environmental radiation level were evaluated as high in the order of the NaI(Tl), $LaBr_3$(Ce), and $CeBr_3$ detectors. These results were compared based on each detector's intrinsic and measurement environment background, detection efficiency, and energy resolution for the gamma-ray energy region of the radionuclide of interest.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.