• Title/Summary/Keyword: NaCl treatment

Search Result 844, Processing Time 0.032 seconds

Effects of NaCl/H3PO4 Flame Retardant Treatment on Lyocell Fiber for Thermal Stability and Anti-oxidation Properties (NaCl/H3PO4 내염화 처리가 라이오셀 섬유의 열 안정 및 내산화 특성에 미치는 영향)

  • Kim, Eun Ae;Bai, Byong Chol;Jeon, Young-Pyo;Lee, Chul Wee;Lee, Young-Seak;In, Se Jin;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.4
    • /
    • pp.418-424
    • /
    • 2014
  • The improved thermal stability and anti-oxidation properties of Lyocell fiber were studied based on flame retardant treatment by using NaCl/$H_3PO_4$ solution. The optimized conditions of flame retardant treatment were studied on various maxing ratio of NaCl and $H_3PO_4$ and the mechanism was proposed through experimental results of thermal stability anti-oxidation. The IPDT (integral procedural decomposition temperature), LOI (limited oxygen index) and $E_a$ (activation energy) increased 23, 30 and 24% respectively via flame retardant treatment. It is noted that thermal stability and anti-oxidation improved based on char and carbon layer formation by dehydrogenation and dissociation of C-C bond resulting the hindrance of oxygen and heat energy into polymer resin. The optimized conditions for efficient flame retardant property of Lyocell fiber were provided using NaCl/$H_3PO_4$ solution and the mechanism was also studied based on experimental results such as IDT (initial decomposition temperature), IPDT, LOI and $E_a$.

Effect of NaCl concentration and Temperature on the Germination of Soybean (Glysine max L.) Cultivars (염분 농도와 온도차이가 콩 품종들의 발아에 미치는 영향)

  • 조진웅;지희정
    • Korean Journal of Plant Resources
    • /
    • v.13 no.1
    • /
    • pp.29-34
    • /
    • 2000
  • In order to obtain fundamental information for developing new salinity tolerance soybean cultivars, the germination rate was evalulated with a total of 28 soybean varieties. The germination rate of soybean cultivars was decreased as the NaCl concentration was higher and that by temperature difference was the lowest at 35$^{\circ}C$. the germination rate of 1.2% NaCl treatment of seed shape and size was the highest at 15$^{\circ}C$ but was the lowest at 35$^{\circ}C$ in small seed groups. The germination rates of Gumjungkong, Alchankong, Gumgangkong, Hayumkong, Hwasungpukong, Janmikong cultivars were higher when treated with 1.2% NaCl at 35$^{\circ}C$, but those of Dawonkong, Hannamkong, Kwangankong, Daebaekkong, Danwonkong, Sukwyangputkong, Keunolkong, Bokwangkong, Jangyoupkong cultivars were lower. The germination rate of soybean cultivars was significantly decreased by higher temperature and NaCl concentration.

  • PDF

Stabilization of As Contaminated Soils using a Combination of Hydrated Lime, Portland Cement, FeCl3·6H2O and NaOH (소석회, 포틀랜드 시멘트, FeCl3·6H2O, NaOH를 이용한 비소 오염토양의 안정화)

  • Moon, Deok-Hyun;Oh, Da-Yeon;Lee, Seung-Je;Park, Jeong-Hun
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2010
  • The purpose of this study was to investigate the effectiveness of a stabilization treatment for As contaminated soil. A combination of hydrated lime, Portland cement, $FeCl_3{\cdot}6H_2O$, and NaOH were used as stabilizing agents. The effectiveness of stabilization treatment was evaluated by the Korean Standard Test (KST) method (1N HCl extraction). Sequential extractions were performed to investigate the As distribution after treatment. Following the application of the treatment, curing periods of up to 7 and 28days were investigated. The experimental results showed that a combination of hydrated lime/Portland cement was more effective than treatments of hydrated lime or Portland cement at immobilizing As in the contaminated soil. The treatment of 25wt% hydrated lime and 5wt% Portland cement was effective in reducing As leachability less than the Korean warning standard of 20 mg/kg. However, the treatments of hydrated lime and Portland cement failed to meet the Korean warning standard even when up to 30 wt% was used. The treatment utilizing hydrated lime and $FeCl_3{\cdot}6H_2O$ was not effective in properly reducing As leachability. The addition of $FeCl_3{\cdot}6H_2O$ was negative in terms of pH condition. Moreover, the treatment with hydrated lime/NaOH was effective in reducing As leachability but not as much as hydrated lime/Portland cement. The sequential extraction results indicated that the residual phase was greatly increased upon the treatment of hydrated lime/Portland cement. It was concluded that the hydrated lime/Portland cement treatment was the best among the other combinations studied at achieving trace As concentrations.

The Study on Emulsifying and Foaming Properties of Buckwheat Protein Isolate (분리 메밀 단백질의 유화 및 기포특성에 관한 연구)

  • 손경희;최희선
    • Korean journal of food and cookery science
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 1993
  • Buckwheat protein isolate was tested for the effects of pH, addition of sodium chloride and heat treatment on solubility, emulsion capacities, emulsion stability, surface hydrophobicity, foam capacities and foam stability. The solubility of buckwheat protein isolate was affected by pH and showed the lowest value at pH 4.5, the isoelectric point of buckwheat protein isolate. The solubility significantly as the pH value reached closer to either ends of the pH, i.e., pH 1.0 and 11.0. The effects of NaCl concentration on solubility were as follows; at pH 2.0, the solubility significantly decreased when NaCl was added; at pH 4.5, it increased above 0.6 M; at pH 7.0 it increased; and at pH 9.0 it decreased. The solubility increased above $80^{\circ}C$, at all pH ranges. The emulsion capacity was the lowest at pH 4.5. It significantly increased as the pH approached higher acidic or alkalic regions. At pH 2.0, when NaCl was added, the emulsion capacity decreased, but it increased at pH 4.5 and showed the maximum value at pH 7.0 and 9.0 with 0.6 M and 0.8 M NaCl concentrations. Upon heating, the emulsion capacity decreased at acidic pH's but was maximised at pH 7.0 and 9.0 on $60^{\circ}C$ heat treatment. The emulsion stability was the lowest at pH 4.5 but increased with heat treatment. At acidic pH, the emulsion stability increased with the increase in NaCl concentration but decreased at pH 7.0 and 9.0. Generally, at other pH ranges, the emulsion stability was decreased with increased heating temperature. The surface hydrophobicity showed the highest value at pH 2.0 and the lowest value at pH 11.0. As NaCl concentrationed, the surface hydrophobicity decreased at acidic pH. The NaCl concentration had no significant effects on surface hydrophobicity at pH 7.0, 9.0 except for the highest value observed at 0.8 M and 0.4 M. At all pH ranges, the surface hydrophobicity was increased, when the temperature increased. The foam capacity decreased, with increased in pH value. At acidic pH, the foam capacity was decreased with the increased in NaCl concentration. The highest value was observed upon adding 0.2 M or 0.4 M NaCl at pH 7.0 and 9.0. Heat treatments of $60^{\circ}C$ and $40^{\circ}C$ showed the highest foam capacity values at pH 2.0 and 4.5, respectively. At pH 7.0 and 9.0, the foam capacity decreased with the increased in temperature. The foam stability was not significantly related to different pH values. The addition of 0.4 M NaCl at pH 2.0, 7.0 and 9.0 showed the highest stability and the addition of 1.0 M at pH 4.5 showed the lowest. The higher the heating temperature, the lower the foam stability at pH 2.0 and 9.0. However, the foam stability increased at pH 4.5 and 7.0 before reaching $80^{\circ}C$.

  • PDF

Effect of Temperature and Sodium Chloride on Seed Germination of Thuja orientalis (온도 및 염화나트륨이 측백나무 종자 발아에 미치는 영향)

  • Tak Woo-Sik;Kim Tae-Su;Choi Chung-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.1
    • /
    • pp.97-104
    • /
    • 2006
  • This study was conducted to investigate effect of temperature and NaCl on the seed germination and water absorption of Thuja orientalis. Seeds were treated with 0, 500, 1,000, 2,000 and 4,000ppm of NaCl and placed in different chambers at 15, 20, 25 and $30^{\circ}C$, respectively. And seed properties and relative water absorptions were analyzed. Germination decreased with the increase of both temperature and NaCl concentration, and especially the difference was obvious at $30^{\circ}C$. Dormancy and mortality increased with the increase of temperature in non-NaCl treatment. Two-way analysis of variance showed significant effects of temperature, NaCl concentration and interaction between temperature and NaCl concentration (p<0.001). Mean germination time increased with the increase of NaCl concentration at 15, 20 and $25^{\circ}C$ but decreased at $30^{\circ}C$ because the seeds were mortal by NaCl high concentration, Germination speed and germination performance index decreased with the increase of NaCl concentration. Those represented decreasing tendency with NaCl concentration but high positive correlation with germination. Relative water absorption decreased with the increase of NaCl concentration and represented high values at $15^{\circ}C$, and showed high positive correlations with germination, germination speed and germination performance index. It was reported that the high temperature and salinity were inhibitive factors of seed germination of Thuja orientalis.

Physiological Response on Saline Tolerance between Halophytes and Glycophytes (내염성에 대한 염생식물과 비염생식물의 생리반응)

  • Lee, Byung-Mo;Shim, Sang-In;Lee, Sang-Gak;Kang, Byeong-Hoa;Chung, Il-Min;Kim, Kwang-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.18 no.1
    • /
    • pp.61-65
    • /
    • 1999
  • This study was conducted to obtain the basic information on saline tolerance of plants. Fourteen plant species were grown under different salinity adjusted with NaCl. After 14 days treatment, physiological changes were investigated. Proline contents of tested plants were increased as salinity was increased. Acalvpha australis, Bidens bipinnata, Erechitites hieracifolia, Erigeron canadensis, Punicum dichotomiflorum, and Solanum nigrum showed drastic increase of proline contents in 200mM NaCl treatment. But Atriplex gmelini, Suaeda asparagoldes did not show drastic increase. As the NaCl concentration increased to 200mM in media, both contents of $Na^+$ and $Cl^-$ were increased. Acalypha australis, Digitaria sanguinalis, Erechitites hieracifolia, and Solanum nigrum showed drastic increase in $Na^+$ and $Cl^-$ contents under 200mM NaCl. But Suaeda asparagoides. Atriplex gmelini, and Spergularia marina were slightly increased. As salinity increased, the $K^+/Na^+$ ratio of halophytes, such as Suaeda asparagoides, Atriplex gmelini, and Spergularia marina were more slightly decreased than glycophytes.

  • PDF

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L. (염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향)

  • Choi, Sung-Chul;Kim, Jong-Guk;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.388-394
    • /
    • 2013
  • Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

N Mineralization and Nitrification in Forest Soils : Effect of Chemical Treatment on N Adsorption by Ion Exchange Resin (산림토양내(山林土壤內) 질소(窒素)의 양료화(養料化)와 질산화(窒酸化)에 관(關)한 연구(硏究) : ion 교환수지(交換樹指)의 처리(處理) 방법(方法)에 따른 질소(窒素)의 흡수율(吸收率) 변화(變化))

  • Lee, Chun Yong;Myrold, David D.
    • Journal of Korean Society of Forest Science
    • /
    • v.79 no.3
    • /
    • pp.285-289
    • /
    • 1990
  • Soil N mineralization and nitrification can be measured conveniently using mixed bed (cation and anion) exchange resin bags. However, appropriate use of these resin bags requires pretreatment to avoid colorimetric interference and standardize N ion adsorption. Three pretreatments were evaluated : control (untreated), 2 M NaCl with a distilled water rinse, and 4 M NaCl. The 4 M NaCl treatment was effective at removing background levels of $NH_4{^+}$ and $NO_3{^-}$, but adsorbed low amounts (about 40%) of inorganic N from standard solutions. Untreated resin bags adsorbed a constant, higher amount of $NO_3{^-}$ (60%), but did not remove background levels of $NH_4{^+}$. The 2 M NaCl treatment followed by a distilled water rinse performed best : it removed background $NH_4{^+}$ and adsorbed a constant amount of both $NH_4{^+}$ (70%) and $NO_3{^-}$ (60%). Because the ion exchange resin is fairly expensive, we also tested if the resin bags could be reused. Resin bags were either loaded with $NH_4{^+}$ and $NO_3{^-}$ in the laboratory or incubated in soil in the field, desorbed with the 2 M NaCl treatment, and then loaded with standard $NH_4{^+}$ and $NO_3{^-}$ solutions. Lab loaded resin bags adsorbed about 60% of inorganic N then loaded with 2.5 or $5.0mgN\;1^{-1}$ and 70% when loaded at 10 or $20mgN\;1^{-1}$, whereas reused field incubated bags showed the opposite adsorption efficiency. These results demonstrate that resin bags can give reproducible results, but care must be taken to evaluate the effect of pretreatment and potential for reuse.

  • PDF

Physicochemical Characteristics of Sweet Persimmon by Heating Treatments (가열처리에 의한 단감의 이화학적 특성)

  • 손규목;김광호;성태수;김종현;신동주;정지영;배영일
    • The Korean Journal of Food And Nutrition
    • /
    • v.15 no.2
    • /
    • pp.144-150
    • /
    • 2002
  • Sweet persimmon were tested in order to identify their use as secondary material which is excellent in function and taste as food. Samples were soaked for 1 and 5 min with NaCl concentration(0, 1 and 3%) at a certain heating temperature(25, 75 and 95$\^{C}$), and then tannin, vitamin C, flavonol, color intensity, sensory test and textural properties were analysed. The results of the analyses were as follows. Tannins were decreased as heating temperature, NaCl concentration and soaking time were increased, especially, that the control was 420 mg% but decreased 228 and 198 mg% at 95$\^{C}$(1 and 3% NaCl concentration) for 5 min. soaked in each. Vitamin C content also decreased more in higher temperature and NaCl concentration than control(122.4 mg%). Color intensity showed higher value in 1. and b than in heating temperature, NaCl concentration and soaked time longer remarkably, but a value decreased. The peel of sweet persimmons was analyzed myricetin(2.0 $\mu$g/g), quercetin(34.5 $\mu$g/g) and kaemperol(1.1$\mu$g/g), but in pre-treatment sample(95$\^{C}$, 1% NaCl concentration and 5 min. soaked) was showed higher myricetin(9.5 $\mu$g/g) and quercetin(5.5 $\mu$g/g). Textural properties were good in pre-treatment sample(95$\^{C}$, 1% NaCl concentration and 5 min. soaked) such as brittleness, cohesiveness, gumminess and chewiness. In sensory analysis, the pre-treatment samples(95$\^{C}$, 1% NaCl concentration and 5 min. soaked and 95$\^{C}$, 3% NaCl concentration and 1 min. soaked) were showed higher point than others.