• Title/Summary/Keyword: NaCl Concentration

Search Result 1,589, Processing Time 0.029 seconds

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L. (염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향)

  • Choi, Sung-Chul;Kim, Jong-Guk;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.388-394
    • /
    • 2013
  • Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

Effect of NaCl/Monosodium Glutamate (MSG) Mixture on the Sensorial Properties and Quality Characteristics of Model Meat Products

  • Chun, Ji-Yeon;Kim, Byong-Soo;Lee, Jung-Gyu;Cho, Hyung-Yong;Min, Sang-Gi;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.34 no.5
    • /
    • pp.576-581
    • /
    • 2014
  • Sodium chloride is an important ingredient added to most of foods which contributes to flavor enhancement and food preservation but excess intake of sodium chloride may also cause various diseases such as heart diseases, osteoporosis and so on. Therefore, this study was carried out to investigate the effect of monosodium glutamate (MSG) as a salty flavor enhancer on the quality and sensorial properties of the NaCl/MSG complex and actual food system. For characterizing the spray-dried NaCl/MSG complex, surface dimension, morphology, rheology, and saltiness intensity were estimated by increasing MSG (0-2.0%) levels at a fixed NaCl concentration (2.0%). MSG levels had no effect of the characteristics of the NaCl/MSG complex, although the addition of MSG increased the surface dimension of the NaCl/MSG complex significantly (p<0.05). Furthermore, the effect of MSG on enhancing the salty flavor was not observed in the solution of the NaCl/MSG complex. In the case of an actual food system, model meat products (pork patties) were prepared by replacing NaCl with MSG. MSG enhanced the salty flavor, thereby increasing overall acceptability of pork patties. Replacement of NaCl with MSG (<1.0%) did not result in negative sensorial properties of pork patties, although quality deterioration such as high cooking loss was found. Nevertheless, MSG had a potential application in meat product formulation as a salty flavor enhancer or a partial NaCl replacer when meat products were supplemented with binding agents.

The Correlation between NaCl Adaptation and Heat Sensitivity of Listeria monocytogenes, a Foodborne Pathogen through Fresh and Processed Meat

  • Lee, Jeeyeon;Ha, Jimyeong;Kim, Sejeong;Lee, Soomin;Lee, Heeyoung;Yoon, Yohan;Choi, Kyoung-Hee
    • Food Science of Animal Resources
    • /
    • v.36 no.4
    • /
    • pp.469-475
    • /
    • 2016
  • This study examined the relationship between NaCl sensitivity and stress response of Listeria monocytogenes. Nine strains of L. monocytogenes (NCCP10805, NCCP10806, NCCP10807, NCCP10808, NCCP10809, NCCP10810, NCCP10811, NCCP10920 and NCCP 10943) were exposed to 0%, 1%, 2% and 4% NaCl, and then incubated at 60℃ for 60 min to select strains that were heat-sensitized (HS) and non-sensitized (NS) by NaCl exposure. After heat challenge, L. monocytogenes strains were categorized as HS (NCCP 10805, NCCP10806, NCCP10807, NCCP10810, NCCP10811 and NCCP10920) or NS (NCCP10808, NCCP10809 and NCCP10943). Total mRNA was extracted from a HS strain (NCCP10811) and two NS strains (NCCP10808 and NCCP10809), and then cDNA was prepared to analyze the expression of genes (inlA, inlB, opuC, betL, gbuB, osmC and ctc) that may be altered in response to NaCl stress, by qRT-PCR. The expression levels of two invasion-related genes (inlA and inlB) and two stress response genes (opuC and ctc) were increased (p<0.05) in NS strains after NaCl exposure in an NaCl concentration-dependent manner. However, only betL expression was increased (p<0.05) in the HS strains. These results indicate that the effect of NaCl on heat sensitization of L. monocytogenes is strain dependent and that opuC and ctc may prevent NS L. monocytogenes strains from being heat sensitized by NaCl. Moreover, NaCl also increases the expression of invasion-related genes (inlA and inlB).

Solubilization of BSA into AOT Reverse Micelles Using the Phase-Transfer Method: Effects of pH and Salts (상 접촉법을 이용한 BSA의 AOT 역미셀으로 가용화: pH와 염의 영향)

  • 노선균;강춘형
    • KSBB Journal
    • /
    • v.16 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • Bovine serum albumin(BSA) was solubilized into the reverse micellar phase consisting of sodium bis(2-ethylhexyl) sulfosuccinate(AOT) and isooctane using the phase transfer method. Of particular interest in this study were the effects of pH and the added salt type and concentration on the solubilization efficiency. When univalent or divalent salts such as KCl, NaCl, $MgCl_2$, or $CaCl_2$ were added to the aqueous phase at a concentration of 0.1 M, maximum solubilization efficiency was attained at a pH ranging from 5 to 7, depending on the added salt type. Increased salt concentration up to 1 M resulted in an increased solubilization efficiency for $CaCl_2$ and NaCl, while the addition of $MgCl_2$ beyond 0.1 M showed an anomalous trend. Further, it was noteworthy that too a large extent the protein precipitated in the interface between the organic and aqueous phases at lower pHs and lower salt concentrations. The size of the reverse micelle water pool was estimated by measuring the molar ratio of the surfactant to the water, $W_0$. Irrespective of pH in the aqueous phase, the resulting value of $W_0$ was almost constant, eg., 20 for $MgCl_2$ . However, the value of $W_0$ decreased with increased salt concentration in the cases of KCl and $CaCl_2$.

  • PDF

Effect of Cationization Agent Concentration on Glycan Detection Using MALDI TOF-MS

  • Kim, Inyoung;Shin, Dongwon;Paek, Jihyun;Kim, Jeongkwon
    • Mass Spectrometry Letters
    • /
    • v.8 no.1
    • /
    • pp.14-17
    • /
    • 2017
  • The effect of cationization agent concentration on glycan detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was investigated using $Na^+$ ions in the form of NaCl as the cationization agent. NaCl solution concentrations ranging from 1 mM to 1 M were investigated. Glycans from ovalbumin were mixed with the cationization agent solution and the 2,5-dihydroxybenzoic acid (2,5-DHB) matrix solution in a volume ratio of 1:1:1. The resulting mixture was loaded onto the MALDI plate. Two MALDI-TOF MS instruments (Voyager DE-STR MALDI-TOF MS and Tinkerbell RT MALDI-TOF MS) were used for detection of glycans. The best detection, in terms of the number of identified glycans, the peak intensity, and the signal-to-noise (S/N) ratio, was obtained with NaCl concentrations of 0.01-0.1 M for both MALDI-TOF MS instruments.

Change in Photosynthesis, Proline Content, and Osmotic Potential of Corn Seedling under High-Saline Condition

  • Yoon Byeong Sung;Jin Chengwn;Park Sang Un;Cho Dong Ha
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.1
    • /
    • pp.28-31
    • /
    • 2005
  • To identify salt-tolerance characteristics of corn seedling was treated in solution of 0, 50 and 100 mM NaCl of hydroponic cultivation. In photosynthesis of corn seedling, there was no large difference between 50mM and 0 mM NaCl solution, however, in 100 mM NaCl solution, the tolerance gradually decreased to $76\%,\;49\%,\;and\;31\%$ after one day, four days, and seven days, respectively, in comparison to 0 mM NaCl solution. Osmotic potential of corn in seedling period was significantly decreased with increasing saline level, however, free proline content in the plant on the ground was significantly increased with increasing saline level and with the lapse of time. In terms of correlation among major characteristics, there was a highly significant positive difference between osmotic pressure potential and photosynthesis, However, highly negative correlation was found between osmotic pressure potential and free proline content. In addition, it was expected that young seedling of corn with saline tolerance may be utilized in the transplantation in salt-accumulated land. Based on above-shown result, in terms of saline tolerance of Chalok-2 variety, growth suppression was serious with 100mM NaCl solution. However, growth was expected that seedling growth would be favorable under 50 mM NaCl solution.

Evaluation of the Coating Liquid Sprayed on Landscape Plants to Prevent De-icing Stresses - Focus on Chlorophyll Fluorescence Analysis - (조경수목의 제설제 피해저감을 위한 엽면코팅제 처리효과 분석 - 엽록소 형광분석법을 중심으로 -)

  • Kwon, Hee-Bum;Kim, Tae-Jin
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.29-36
    • /
    • 2008
  • This study examined the de-icing agents' stresses on Pinus strobus and Pinus thunbergii by chlorophyll fluorescence analysis. The assumption of this study was that photosynthetic efficiency was changed by de-icing agents applied onto highways in winter by altering the concentration of the de-icier, types of de-icer and leaf surface coating liquid application. The practical purpose of this study was to investigate the de-icing gents stresses on Pinus strobus by the highway area where de-icing agents were used frequently and to discover out minimizing stratages to prevent further damages. or this simulation study, a sample plot was established in Bogae-myeon, Anseong, Gyeonggi-do and Pinus strobus and Pinus thunbergii were planted for the examination in April, 2005. Five types of de-icing agents - NaCl, $CaCl_2$, T product(NS40:low cWoride de-icer type), NaCl+$CaCl_2$ and T product+$CaCl_2$ - were selected and the their concentration was altered to 0%, 5%, and 9%. Five types of de-icing agents were applied to both trees treated by a leaf surface coating liquid and trees not treated by leaf surface coating liquid. For the fluorescence analysis, the leaf surface coating liquid, which was diluted by 10 times, was sprkinkled onto the two tree species three days prior to gathering samples. Sample leaves from the two tree species were gathered at 10 o'clock in the morning of mid-August, 2006 and brought to the laboratory within three hours to be dipped in different concentrations (0%, 5%, or 9%) of the five de-icing agents for two minutes. Then the eaves were placed on the filter paper dipped in each solution on a petri dish, sealed with polyethylene film and kept in a growth chamber at $22^{\circ}C$ for 72 hours. Out of the growth chamber, the leaves were treated with a chorophyll fluorescence reaction analyzer for 30 minutes to measure the initial light acceptance rate(Fo), maximum light acceptance ate(Fv/Fm), light acceptance usage(F' q/F' m) and optical electron delivery coefficient(qP). As a result, Pinus strobus' initial light acceptance rate(Fo) decreased as T product and NaCl increased in concentration, and $Cal_2$ did not reduce much with the eaf surface coating liquid application. Maximum light acceptance rate(Fv/Fm) and light acceptance usage(F' q/F' m) decreased sharply as T product and NaCl increased in concentration and NaCl+$CaCl_2$ and T product+$CaCl_2$ did not reduce much with leaf surface coating liquid application. Optical electrons delivery coefficient (qP) decreased as T product increased in concentration on trees without the leaf surface coating liquid application and all other de-icing agents did not show much reduction. As for Pinus thunbergii, the initial light acceptance rate(Fo) decreased as T product increased in concentration, but the maximum light acceptance rate(Fv/Fm) was not reduced much by changes in concentration. light acceptance usage(F' q/F' m) decreased as NaCl increased in concentration and optical electron delivery coefficient(qP) decreased as NaCl increased in concentration in both with and without leaf surface coating liquid application. In conclusion, it was possible to plant Pinus strobus if spraying leaf surface coating liquid or cleaning deicing salt to prevent the damage caused by deicing agents was more economical than replacing the trees. If not, it was better to plant Pinus thunbergii. Another way to decrease the deicing gents stresses of landscape plants would be planting the trees further away from the roads even though it might take longer period to display its planting functions.

Active Transport Characteristics of Anions through a Cell Membrane Model which Irradiated by γ-ray (감마선이 조사된 세포막모델을 통한 음이온의 능동 전달 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.187-195
    • /
    • 2015
  • The active transport characteristics of anions of cell membrane model which irradiated by $^{60}Co\;{\gamma}-ray$ was investigated. The cell membrane model used in this experiment was a sulfonated copolymerized membrane of poly(1-methyl-4-vinylpyridiniumiodide-co-divinylbenzene : MeVP-DVBI). First, the initial flux of $OH^-$ and $Cl^-$, $Na^+$ of membrane which was not irradiated was decreased with increase of thickness of membrane $80-200{\mu}m$, increased with increase of NaOH concentration 0-0.5mol/L and MeVP-DVBI concentration 20-80% was increased with initial flux of $OH^-$ and $Cl^-$, decreased with initial flux of $Na^+$. Second, the initial flux of membrane which was irradiated was less than that. And the driving force of pH of irradiated membrane was significantly increased more than membrane which was not irradiated. The initial flux of the $OH^-$ ion was decreased with increase of $H^+$ ion concentration. As selective transport of $OH^-$ and $Cl^-$ of cell membrane model were abnormal, cell damages were appeared at cell.

Electrochemical Degradation of Phenol by Electro-Fenton Process (전기-펜톤 공정에 의한 페놀의 전기화학적 분해)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.3
    • /
    • pp.201-208
    • /
    • 2009
  • Oxidation of phenol in aqueous media by electro-Fenton process using Ru-Sn-Sb/graphite electrode has been studied. Hydrogen peroxide was electrically generated by reaction of dissolved oxygen in acidic solutions containing supporting electrolyte and $Fe^{2+}$ was added in aqueous media. Phenol degradation experiments were performed in the presence of electrolyte media at pH 3. Effect of operating parameters such as current, electrolyte type (NaCl, KCl and $Na_2SO_4$) and concentration, $Fe^{2+}$ concentration, air flow rate and phenol concentration were investigated to find the best experimental conditions for achieving overall phenol removal. Results showed that current of 2 A, NaCl electrolyte concentration of 2g/l, 0.5M concentration of $Fe^{2+}$, air flow rate of 1l/min were the best conditions for mineralization of the phenol by electro-Fenton.

Germination and Radicle Elongation of Berseem , Subterranean and White Clover as Affected by NaCl and Temperature (NaCl 농도와 온도에 따른 Berseem , Subterranean 및 White Clover의 발아 및 유근신장)

  • 강진호;박진서;박정민
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.15 no.2
    • /
    • pp.80-86
    • /
    • 1995
  • High salinity common in reclaimed soil can reduce germination of crop seeds and aftermath its establishment and production. The experiment was done to measure germination and radicle elongation of berseem, subterranean, white clover and Italian ryegrass as Control under different temperature and NaCl concentrations. Onehundred seeds of berseem (Trifolium ulexandrinum cv. Bigbee). suberranean (T. suhterruneum, cv. Nungarin), white clover (T. repens, cv. Regal) and Italian ryegrass (Lolium mulriflorum, cv. Terafloum) were placed in petri dishes with a sheet of filter paper replaced every two days, and then exposed to 0, 12.5, 25. 50, 100 and 200mh4 of sodium chloride in darkened growth chambers controlled with 10, 15 and $20^{\circ}C$. Percent germination and radicle elongation were measured. Beneem clover showed greatest daily percent germination among the cloven. That of subterranean clover, moreover, was higher than that of white clover till 4 days after imbibition but the reverse result was true thereafter. Although germination of Italian ryegrass was delayed with decreased at 200mM of NaCl of $20^{\circ}C$. at 200mM of under$15^{\circ}C$ , and at higher than lOOmh4 of all level of temperature, respectively. Berseem clover had greatest radicle length under the same concentration of NaCl regardless of temperature treatment while radicle elongation of subterranean and white clover was repressed over 50-100mM of NaC1. The slope of linear regression equation between concentration of NaCl and percent germination declined under all temperature treatment in order of berseem, subterranean and white clover whereas the reverse result was showed in radicle length.

  • PDF