Browse > Article
http://dx.doi.org/10.5478/MSL.2017.8.1.14

Effect of Cationization Agent Concentration on Glycan Detection Using MALDI TOF-MS  

Kim, Inyoung (Department of Chemistry, Chungnam National University)
Shin, Dongwon (Department of Chemistry, Chungnam National University)
Paek, Jihyun (Department of Chemistry, Chungnam National University)
Kim, Jeongkwon (Department of Chemistry, Chungnam National University)
Publication Information
Mass Spectrometry Letters / v.8, no.1, 2017 , pp. 14-17 More about this Journal
Abstract
The effect of cationization agent concentration on glycan detection via matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was investigated using $Na^+$ ions in the form of NaCl as the cationization agent. NaCl solution concentrations ranging from 1 mM to 1 M were investigated. Glycans from ovalbumin were mixed with the cationization agent solution and the 2,5-dihydroxybenzoic acid (2,5-DHB) matrix solution in a volume ratio of 1:1:1. The resulting mixture was loaded onto the MALDI plate. Two MALDI-TOF MS instruments (Voyager DE-STR MALDI-TOF MS and Tinkerbell RT MALDI-TOF MS) were used for detection of glycans. The best detection, in terms of the number of identified glycans, the peak intensity, and the signal-to-noise (S/N) ratio, was obtained with NaCl concentrations of 0.01-0.1 M for both MALDI-TOF MS instruments.
Keywords
MALDI-TOF MS; glycans; cationization agent; PNGase F; 2,5-dihydroxybenzoic acid;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Park, E.; Yang, H. J.; Kim, Y. S.; Kim, J. Food Chem. 2012, 134, 1658.   DOI
2 Gustafsson, O. J.; Briggs, M. T.; Condina, M. R.; Winderbaum, L. J.; Pelzing, M.; McColl, S. R.; Everest-Dass, A. V.; Packer, N. H.; Hoffmann, P. Anal. Bioanal. Chem. 2015, 407, 2127.   DOI
3 Li, H.; Zhao, X.; Zhang, Q.; Feng, X.; Liu, B. F.; Liu, X. Anal. Bioanal. Chem. 2014, 406, 6235.   DOI
4 Barkauskas, D. A.; An, H. J.; Kronewitter, S. R.; de Leoz, M. L.; Chew, H. K.; de Vere White, R. W.; Leiserowitz, G. S.; Miyamoto, S.; Lebrilla, C. B.; Rocke, D. M. Bioinformatics 2009, 25, 251.   DOI
5 Park, C. W.; Jo, Y.; Jo, E. J. Anal. Biochem. 2013, 443, 58.   DOI
6 Li, B.; An, H. J.; Kirmiz, C.; Lebrilla, C. B.; Lam, K. S.; Miyamoto, S. J. Proteome Res. 2008, 7, 3776.   DOI
7 Zhu, J.; Wu, J.; Yin, H.; Marrero, J.; Lubman, D. M. J. Proteome Res. 2015, 14, 4932.   DOI
8 West, R. E., 3rd.; Findsen, E. W.; Isailovic, D. J. Am. Soc. Mass. Spectrom. 2013, 24, 1467.   DOI
9 Hu, Y.; Mechref, Y. Electrophoresis 2012, 33, 1768.   DOI
10 Guillard, M.; Gloerich, J.; Wessels, H. J.; Morava, E.; Wevers, R. A.; Lefeber, D. J. Carbohydr. Res. 2009, 344, 1550.   DOI
11 Reiding, K. R.; Blank, D.; Kuijper, D. M.; Deelder, A. M.; Wuhrer, M. Anal. Chem. 2014, 86, 5784.   DOI
12 Jin, J. M.; Yoo, J.; Jang, S. Y.; Cho, K.; Kim, Y. H. Bull. Korean Chem. Soc. 2014, 35, 955.   DOI
13 Kim, I.; Kim, S.; Shin, D.; Kim, J. Bull. Korean Chem. Soc. 2016, 37, 105.   DOI
14 An, H. J.; Peavy, T. R.; Hedrick, J. L.; Lebrilla, C. B. Anal. Chem. 2003, 75, 5628.   DOI
15 Morelle, W.; Canis, K.; Chirat, F.; Faid, V.; Michalski, J. C. Proteomics 2006, 6, 3993.   DOI
16 Uematsu, R.; Furukawa, J. I.; Nakagawa, H.; Shinohara, Y.; Deguchi, K.; Monde, K.; Nishimura, S. I. Mol. Cell. Proteomics 2005, 4, 1977.   DOI
17 Tarentino, A. L.; Gomez, C. M.; Plummer, T. H., Jr. Biochemistry 1985, 24, 4665.   DOI