• Title/Summary/Keyword: NaCl Concentration

Search Result 1,592, Processing Time 0.026 seconds

Potential Antitumor ${\alpha}$-methylene-${\gamma}$-butyrolactone-bearing nucleic acid bases. 2. synthesis of $5^I-Methyl-5^I$-[2-(5-substituted uracil-1-yl)ethyl]-$2^I-oxo-3^I$-methylenetetrahydrofurans

  • Kim, Jack-C.;Kim, Ji-A;Park, Jin-Il;Kim, Si-Hwan;Kim, Seon-Hee;Choi, Soon-Kyu;Park, Won-Woo
    • Archives of Pharmacal Research
    • /
    • v.20 no.3
    • /
    • pp.253-258
    • /
    • 1997
  • Ten, heretofore unreported, $ 5^I-methyl-5^I-[2-(5-substituted uracil-1-yl)ethyl)]-2^I-oxo-3^I$-methylenetetrahydrofurans (H, F, Cl, Br, I, $ CH_3$,$CF_3$,$CH_2CH_3$,$ CH=CH2$, SePh) (7a-j) were synthesized and evaluated against four cell lines (K-562, FM-3A, P-388 and U-937). For the preparation of ${\alpha}$-methylene-${\gamma}$-butyrolactone-linked to 5-substituted uracils (7a-j), the convenient Reformasky type reaction was employed which involves the treatment of ethyl ${\alpha}$-(bromomethyl)acrylate and zinc with the respective 1-(5-substituted uracil-1-yl)-3-butanone (6a-j). The 5-substituted uracil ketones (6a-j) were directly obtained by the respective Michael type reaction of vinyl methyl ketone with the $K_2CO_3$(or NaH)-treated 5-substituted uracils (5a-j) in the presence of acetic acid in the DMF solvent. The .alpha.-methylene-.gamma.-butyrolactone compounds showing the most significant antitumor activity are 7e, 7f, 7h and 7j (inhibitory concentration $(IC_50)$ ranging from 0.69 to $2.9 {\mu}g/ml$), while 7b, 7g and 7i have shown moderate to significant activity. The compounds 7a, 7c and 7d were found to be inactive. The synthetic intermediate compounds 6a-j were also screened and found marginal to moderate activity where compounds 6b and 6g showed significant activity $(IC_50:0.4~2.8 {\mu}g/ml)$.

  • PDF

Characteristics of Strong Alkaline Electrolyzed Water Produced in All-in-one Electrolytic Cell (일체형 전해조에서 생산된 강알카리성 전해수의 특성)

  • Lee, Ho Il;Rhee, Young Woo;Kang, Kyung Seok
    • Clean Technology
    • /
    • v.18 no.4
    • /
    • pp.446-450
    • /
    • 2012
  • Strong alkaline electrolyzed water which is produced in cathode by electrolyzing the solution where electrolytes (NaCl, $K_2CO_3$ etc.) are added in diaphragm electrolytic cell, is eco-friendly and has cleaning effects. So, it is viewed as a substitution of chemical cleaner. In addition, strong alkaline electrolyzed water is being used by some Japanese automobile and precision parts manufacturing industries. When strong alkaline electrolyzed water is produced by using diaphragm electrolytic cell, it is necessarily produced at the anode side. Since strong acidic electrolyzed water produced is discarded when its utilization cannot be found, production efficiency of electrolyzed water is consequently decreased. Also, there is a weakness electrolytic efficiency is decreasing due to the pollution of diaphragm. In order to overcome this, non-diaphragm all-in-one electrolytic cell integrated with electrode reaction chamber and dilution chamber was applied. Strong alkaline electrolyzed water was produced for different composition of electrolytes, and their properties and characteristics were identified. In comparing the properties between strong alkaline electrolyzed water produced in diaphragm electrolytic cell and that produced in all-in-one electrolytic cell, the differences in ORP and chlorine concentration were found. In emulsification test to confirm surface-active capability, similar results were obtained and strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell was identified to be useable as a cleaner like strong alkaline electrolyzed water produced in diaphragm electrolytic cell. Strong alkaline electrolyzed water produced in non-diaphragm all-in-one electrolytic cell is thought to have sterilizing power because it has active chlorine which is different from strong alkaline electrolyzed water produced in diaphragm electrolytic cell.

Preparation of Minimally Processed Mulberry (Morus spp.) Juices (최소가공기술을 이용한 오디 과실주스의 제조)

  • Kim, In-Sook;Lee, Jun-Young;Rhee, Soon-Jae;Youn, Kwang-Sup;Choi, Sang-Won
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.321-328
    • /
    • 2004
  • Raw mulberry (Morus spp.) juice was prepared by minimal processing using several filter aids, fining agents, and clarifying enzymes, followed by filtration, centrifugation, and membrane filtration. Control of browning in minimally processed mulberry juices by anti-browning agents, sodium hydrosulfite, L-ascorbic acid, citric acid, and NaCl, was investigated using quantitative measurements of color changes during storage. Clarification of mulberry juice was improved by adding several filter aids, fining agents, and enzymes, followed by filtration and centrifugation. Several fining agents, including chitosan, chitin, PVPP, gelatin, and casein at a concentration of 1%, and combination of ultrafiltration and centrifugation at 8,000 rpm were not suitable for clarification of juice owing to strong adsorption of anthocyanin pigment. Combination of $0.01\;{\mu}m$ membrane filtration and centrifugation at 8,000 rpm was effective for clarification of mulberry juice. Browning of minimally processed mulberry juice was inhibited significantly by adding 200 ppm sodium hydrosulfite, and 0.1% L-ascorbic acid (L-AsA) and 0,1% citric acid (CA) also showed considerable browning inhibition. Combination of L-AsA and CA, which was moderately effective for browning inhibition of juice, may be useful as a sulfite alternative for mulberry juice. Optimum sugar ($^{\circ}Brix$)/acid ratio and commercial sterilization of minimally processed mulberry juice were approximately 40 and 10 min at $85-90^{\circ}C$, respectively.

Effect of Brine Treatment Applied in the Manufacture of Traditional Forged High Tin Bronzes of Korea (한국의 방짜유기에 가해지는 염수처리의 효과에 관한 연구)

  • Lee, Jae-Sung;Jeon, Ik-Hwan;Kwak, Seok-Chul;Park, Jang-Sik
    • Journal of Conservation Science
    • /
    • v.28 no.4
    • /
    • pp.403-410
    • /
    • 2012
  • The brine treatment applied during the fabrication of forged high tin bronze objects is considered effective at the removal of surface oxide layers developed at elevated temperatures. There is not much information, however, available for the understanding of its exact effect and purpose. This work performed laboratory experiments to characterize the effect brine treatments produce on the surface of bronze objects during fabrication. Specimens were first made in the bronze shop of the Yongin folk village under varying conditions of brine treatments, and the results obtained were then used in the following laboratory experiments where the effect of brine treatments were investigated in terms of brine concentrations, alloy compositions and thermo-mechanical treatments. The results show that oxide layers generated at high temperature are easily removed by the brine treatment. It was found that the element, chlorine, played a key role in the removal of such oxide layers as opposed to the other constituent of the brine, sodium, makes no notable contribution. In bronze alloys containing 22% tin, this brine effect is obtained regardless of the application of forging as long as the brine concentration is over 0.5% based on weight. In alloys containing lead, however, no brine effect is observed due to the molten lead that emerges from inside the hot bronze specimen and forms a thin layer on its surface.

Development and Validation of an Analytical Method for Tridemorph Determination in Tea Samples by Liquid Chromatograph-Electrospray Ionization-Tandem Mass Spectrometry

  • Do, Jung-Ah;Park, Hyejin;Kwon, Ji-Eun;Cho, Yoon-Jae;Chang, Moon-Ik;Oh, Jae-Ho;Hwang, In-Gyun
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.292-298
    • /
    • 2014
  • Tridemorph is a systemic morpholine fungicide for crops. The objective of this study was to develop reliable and sensitive analytical method for determination of tridemorph residues in tea samples for ensuring the food safety. Tridemorph residues in samples were extracted with acetonitrile after hydration, partitioned with saline water, and then purified using an aminopropyl ($NH_2$) SPE cartridge. The purified samples were detected and quantified using LC-ESI-MS/MS. The linear detection limits for tridemorph ranged from 0.02 to $1.0mgL^{-1}$ with a correlation coefficient of 0.9999. The method was validated using tea samples spiked with tridemorph at different concentration levels (0.02 and $0.05{\mu}gmL^{-1}$). The average recovery ranged between 75.0 and 84.7% with relative standard deviations less than 10%. The LOD and LOQ were 0.01 and $0.02mgL^{-1}$, respectively. The developed method was applied successfully to the identification of tridemorph in real tea samples obtained from different sources, and tridemorph was not detected in any of the samples. The results show that the developed analytical method is accurate and suitable for tridemorph determination in tea samples.

Changes of Chemical Properties in Processing of Low Salted and Fermented Shrimp Using Gamma Irradiation immediately before Optimum Fermentation (저염 새우젓 제조를 위한 최적 숙성직전의 감마선 조사시 화학적 품질변화)

  • Lee, Kyong-Haeng;Ahn, Hyun-Joo;Lee, Cherl-Ho;Kim, Yeung-Ji;Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1051-1057
    • /
    • 2000
  • Gamma irradiation was applied to develop fermented shrimp product with lower salt concentration, high sensory quality and storage stability. Shrimp was prepared with 15 and 20% of salt and fermented at $15^{\circ}C$. The sample was irradiated for 15% added salt at the 4th week and for 20% at the 6th week during fermentation with 0, 5 and 10 kGy absorbed doses. The irradiation was applied at optimum stage of fermentation determined when the content of amino nitrogen(AN) arrived approximately 400 mg%. Chemical properties such as amino nitrogen(AN), volatile base nitrogen(VBN), trimethylamine(TMA) and neutral protease activity were examined during whole fermentation. The AN, VBN, TMA and protease activity were not affected immediately after gamma irradiation. The more NaCl concentrations and irradiation dose, the less content of chemical compounds and protease activity was found. From the results of chemical properties, it was concluded that fermented shrimp with 15% of salt and irradiated at 10 kGy before optimum fermentation, or 20% and 5 kGy or above were maintained the sound quality during storage compared with the control.

  • PDF

Effects of Cadmium and Arsenic on Physiological Responses and Copper and Zinc Homeostasis of Rice

  • Jung, Ha-il;Chae, Mi-Jin;Kim, Sun-Joong;Kong, Myung-Suk;Kang, Seong-Soo;Lee, Deog-Bae;Ju, Ho-Jong;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.397-403
    • /
    • 2015
  • Heavy metals reduce the photosynthetic efficiency and disrupt metabolic reactions in a concentration-dependent manner. Moreover, by replacing the metal ions in metalloproteins that use essential metal ions, such as Cu, Zn, Mn, and Fe, as co-factors, heavy metals ultimately lead to the formation of reactive oxygen species (ROS). These, in turn, cause destruction of the cell membrane through lipid peroxidation, and eventually cause the plant to necrosis. Given the aforementioned factors, this study was aimed to understand the physiological responses of rice to cadmium (Cd) and arsenic (As) toxicity and the effect of essential metal ions on homeostasis. In order to confirm the level of physiological inhibition caused by heavy metal toxicity, hydroponically grown rice (Oryza sativa L. cv. Dongjin) plants were exposed with $0-50{\mu}M$ cadmium (Cd, $CdCl_2$) and arsenic (As, $NaAsO_2$) at 3-leaf stage, and then investigated malondialdehyde (MDA) contents after 7 days of the treatment. With increasing concentrations of Cd and As, the MDA content in leaf blade and root increased with a consistent trend. At 14 days after treatment with $30{\mu}M$ Cd and As, plant height showed no significant difference between Cd and As, with an identical reduction. However, As caused a greater decline than Cd for shoot fresh weight, dry weight, and water content. The largest amounts of Cd and As were found in the roots and also observed a large amount of transport to the leaf sheath. Interestingly, in terms of Cd transfer to the shoot parts of the plant, it was only transported to upper leaf blades, and we did not detect any Cd in lower leaf blades. However, As was transferred to a greater level in lower leaf blades than in upper leaf blades. In the roots, Cd inhibited Zn absorption, while As inhibited Cu uptake. Furthermore, in the leaf sheath, while Cd and As treatments caused no change in Cu homeostasis, they had an antagonist effect on the absorption of Zn. Finally, in both upper and lower leaf blades, Cd and As toxicity was found to inhibit absorption of both Cu and Zn. Based on these results, it would be considered that heavy metal toxicity causes an increase in lipid peroxidation. This, in turn, leads to damage to the conductive tissue connecting the roots, leaf sheath, and leaf blades, which results in a reduction in water content and causes several physiological alterations. Furthermore, by disrupting homeostasis of the essential metal ions, Cu and Zn, this causes complete heavy metal toxicity.

Optimum dimensionally stable anode with volatilization and electrochemical advanced oxidation for volatile organic compounds treatment (전극의 부반응 기포발생에 따른 휘발특성과 전기화학고도산화능을 동시에 고려한 휘발성 유기화합물 처리용 최적 불용성전극 개발)

  • Cho, Wan-Cheol;Poo, Kyung-Min;Lee, Ji-Eun;Kim, Tae-Nam;Chae, Kyu-Jung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.31-41
    • /
    • 2019
  • Volatile organic compounds(VOCs) are toxic carcinogenic compounds found in wastewater. VOCs require rapid removal because they are easily volatilized during wastewater treatment. Electrochemical advanced oxidation processes(EAOPs) are considered efficient for VOC removal, based on their fast and versatile anodic electrochemical oxidation of pollutants. Many studies have reported the efficiency of removal of various types of pollutants using different anodes, but few studies have examined volatilization of VOCs during EAOPs. This study examined the removal efficiency for VOCs (chloroform, benzene, trichloroethylene and toluene) by oxidization and volatilization under a static stirred, aerated condition and an EAOP to compare the volatility of each compound. The removal efficiency of the optimum anode was determined by comparing the smallest volatilization ratio and the largest oxidization ratio for four different dimensionally stable anodes(DSA): Pt/Ti, $IrO_2/Ti$, $IrO_2/Ti$, and $IrO_2-Ru-Pd/Ti$. EAOP was operated under same current density ($25mA/cm^2$) and electrolyte concentration (0.05 M, as NaCl). The high volatility of the VOCs resulted in removal of more than 90% within 30 min under aerated conditions. For EAOP, the $IrO_2-Ru/Ti$ anode exhibited the highest VOC removal efficiency, at over 98% in 1 h, and the lowest VOC volatilization (less than 5%). Chloroform was the most recalcitrant VOC due to its high volatility and chemical stability, but it was oxidized 99.2% by $IrO_2-Ru/Ti$, 90.2% by $IrO_2-Ru-Pd/Ti$, 78% by $IrO_2/Ti$, and 75.4% by Pt/Ti anodes The oxidation and volatilization ratios of the VOCs indicate that the $IrO_2-Ru/Ti$ anode has superior electrochemical properties for VOC treatment due to its rapid oxidation process and its prevention of bubbling and volatilization of VOCs.

Development of Analytical methods for Chinomethionat in Livestock Products (축산물 중 살균제 Chinomethionat의 개별 잔류분석법 확립)

  • Yang, Seung-Hyun;Kim, Jeong-Han;Choi, Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.2
    • /
    • pp.134-141
    • /
    • 2021
  • BACKGROUND: The analytical method was established for determination of fungicide chinomethionat in several animal commodities using gas chromatography (GC) coupled with electron capture detector (ECD). METHODS AND RESULTS: In order to verify the applicability, the method was optimized for determining chinomethonat in various livestock products including beef, pork, chicken, milk and egg. Chinomethionat residual was extracted using acetone/dichloromethane(9/1, v/v) with magnesium sulfate and sodium chloride (salting outassociated liquid-liquid extraction). The extract was diluted by direct partitioning into dichloromethane to remove polar co-extractives in the aqueous phase. The extract was finally purified with optimized silica gel 10 g. CONCLUSION: The method limit of quantitation (MLOQ) was 0.02 mg/kg, which was in accordance with the maximum residue level (MRL) of chinomathionate as 0.05 mg/kg in livestock product. Recovery tests were carried out at two levels of concentration (MLOQ, 10 MLOQ) and resulted in good recoveries (84.8~103.0%). Reproducibilities were obtained (Coefficient of variation <5.2%), and the linearity of calibration curves were reasonable (r2>0.995) in the range of 0.01-0.2 ㎍/mL. This established analytical method was fully validated and could be useful for quantification of chinomathionat in animal commodities as official analytical method.

Degradation of Lead-based Pigments by Atmospheric Environment (납계열 안료의 대기환경에 따른 열화특성)

  • Park, Ju Hyun;Lee, Sun Myung;Kim, Myoung Nam
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.281-293
    • /
    • 2022
  • We examined degradation characteristics of lead based pigments(white lead, Red lead, Litharge) according to atmospheric environmet condition, for example atmospheric gas(CO2, NO2) and soluble salt. Painted samples not changed material compositions but were occured the color change(𝚫E 4~31) after exposed UV irradiation. All sample were not affected by CO2 gas not only color but chemical composition. However, samples were remakably changed color exposed NO2 gas and it was formed secondary product like as lead nitrate. Such as red lead and white lead samples' color difference were 𝚫E 2 and 𝚫 10 respectively and became dark, along with litharge became bright and color difference was 𝚫E 5 after react with NO2 gas. It confirm that NO2 was influential factor than CO2 in the case of same concentration. Furthermore salt spray test was taken to figure out soluble salt influence in fine dust. The result showed noticeable color change and secondary product was formed on samples' surface. The glue film peeled off or hole, and color changed around the secondary products. After salt spray, XRD pattern showed decrease peak intensity and lower crystalinity. As a result of salt spray test, white lead was formed new product litharge and litharge was formed litharge and minium. According to the results, influential atmospheric factors for conservation of paint pigments were UV, NO2, soluble salt, and litharge was most weakness throughout lead base pigments.