• Title/Summary/Keyword: Na-succinate

Search Result 30, Processing Time 0.029 seconds

Succinate Transport in Rabbit Renal Basolateral Membrane Vesicles (가토 근위세뇨관 Basolateral Membrane Vesicle에서 Succinate 이동 특성)

  • Kim, Yong-Keun;Bae, Hae-Rahn;Rhim, Byung-Yong
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.307-318
    • /
    • 1988
  • Properties of succinate transport were examined in basolaterat membrane vesicles (BLMV) isolated from rabbit renal cortex. An inwardly directed $Na^+$ gradient stimulated succinate uptake and led to a transient overshoot. $K^+,{\;}Li^+,{\;}Rb^+$ and choline could not substitute for $Na^+$ in the uptake process. The dependence of the initial uptake rate of succinate on $Na^+$ concentration exhibited sigmoidal kinetics, indicating interaction of more than one $Na^+$ with transporter Hill coefficient for $Na^+$ was calculated to be 2.0. The $Na^+-dependent$ succinate uptake was electrogenic, resulting in the transfer of positive charge across the membrane. The succinate uptake into BLMV showed a pH optimum at external pH $7.5{\sim}8.0$, whereas succinate uptake into brush border membrane vesicles (BBMV) did not depend on external pH. Kinetic analysis showed that a Na-dependent succinate uptake in BLMV occurred via a single transport system, with an apparent Km of $15.5{\pm}0.94{\;}{\mu}M$ and Vmax of $16.22{\pm}0.25{\;}nmole/mg{\;}protein/min$. Succinate uptake was strongly inhibited by $4{\sim}5$ carbon dicarboxylates, whereas monocarboxylates and other organic anions showed a little or no effect. The succinate transport system preferred dicarboxylates in trans-configuration (furmarate) over cis-dicarboxylates (maleate). Succinate uptake was inhibited by the anion transport inhibitors DIDS, SITS and furosemide, and $Na^+-coupled$ transport inhibitor harmaline. These results indicate the existence of a $Na^+-dependent$ succinate transport system in BLMV that may be shared by the other Krebs cycle intemediates. This transport system seems to be very similar to the luminal transport system for dicarboxylates.

  • PDF

Inhibition of Dicarboxylate Transport by p-chloromercuribenzoic Acid (PCMB) in Plasma Membrane Vesicles of Rabbit Proximal Tubule

  • Kim, Yong-Keun;Kim, Tae-In;Jung, Jin-Sup;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.25 no.2
    • /
    • pp.179-188
    • /
    • 1991
  • Effect of a sulfhydryl reagent, p-chloromercuribenzoic acid (PCMB), on the transport of succinate was studied in brush border (BBMV) and basolateral (BLMV) membrane vesicles isolated from rabbit renal cortex. PCMB induced an irreversible inhibition of the $Na^+-dependent$ succinate uptake in a dose-dependent manner with $IC_{50}$ of 55 and $65\;{\mu}M$ in BBMV and BLMV, respectively. The inhibitory effect of PCMB was prevented by a pretreatment of vesicles with dithiothreitol. PCMB did not increase $Na^+$ permeability at concentrations inhibiting succinate uptake. The PCMB inhibition of succinate uptake was due to a change in Vmax, but not in Km. When membrane vesicles were pretreated with PCMB in the presence of unlabelled succinate, the inhibitory effect was significantly reduced. In both BBMV and BLMV, succinate uptake was inhibited by various sulfhydryl reagents with the inhibitory potency of following order: $HgCl_2$>DTNB>PCMBS>PCMB. These results suggest that sulfhydryl groups are essential for dicarboxylate transport and that they may be located at or near substrate binding sites of the transporters in renal brush border and basolateral membranes.

  • PDF

Effect of Culture Conditions on the production of Succinate by Enterococcus faecalis RKY1

  • Kang, Kui-Hyun;Yun, Jong-Sun;Ryu, Hwa-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.1-7
    • /
    • 2000
  • Bioconversion of fumarate to succinate was anaerobically conduced in a synthetic medium containing glycerol as a hydrogen donor and fumarate as a hydrogen acceptor. We investigated the effects of pH, carbon and nitrogen sources, conversion substrate, and other culture conditions on the production of succinate using a nwely isoloated Enterococcus facalis PKY1. Addition of a variety of carbonates to the medium significantly increasd the rates of production of succinate. The production of succinate and cell growth were relatively satisfactory in the pH range of 7.0-7.6. By using glycerol as a hydrogen donor, high purity succinate was produced with few byproducts. Yeast extract as a sole nitrogen source was the most effective for producing succinalte. As a result, the optimum condition of biconversion was obtained at a medium containing 20g/I glycerol, 50 g/l fumarate, 15 g/l yeast extract, 10 g/l $K_2HPO_4$, 1 g/I NaCl, 50ppm $MgCl_2{\cdot}6H_2O$, 10ppm $FeSo_4{\cdot}7H_2O$, and 5 g/I $Na_2CO_3$ at pH 7.0-7.6. Under the optimum condition, a succinate concentration of 153 g/I was produced in 36 h. The total volumetric production rate and the molar yield of succinate were 4.3 g/l/h and 85%, respectively.

  • PDF

Medium Optimization for Phytase Production by Recombinant Escherichia coli Using Statistical Experimental Design

  • Choi, Won-Chan;Oh, Byng-Chul;Kim, Hyung-Kwoun;Lee, Eun-Sook
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.490-496
    • /
    • 2002
  • The production of E. coli WC7 phytase from a recombinant E. coli strain was optimized using a statistical experimental design approach. Two-level complete factorial designs with seven variables were used for the media optimization. In the first optimization step, the influence of disodium succinate, yeast extract, $K_2HPO_4,\;NH_4H_2PO_4,\;MgSO_4$, NaCl, and trace elements on phytase production was evaluated. As a result, disodium succinate, yeast extract, $NH_4H_2PO_4$, NaCl, and the trace elements were found to have a positive influence on the phytase production, while $K_2HPO_4\;and\;MgSO_4$ had a negative influence. In the second step, the concentrations of disodium succinate and yeast extract were further optimized using central composite designs. The maximum phytase activity obtained was 234 U/ml using 15.9 g/1 disodium succinate, 20 g/1 yeast extract, 5 g/1 K_2HPO_4,\;10 g/1 NH_4H_2PO_4,\;1.5 g/1 MgSO_4$, 4 g/1 NaCl, and 1.5 m1/1 trace elements, which was about a 14-fold increase in comparison with that obtained using the basal medium.

Effects of X-irradiation on the Oxygen Consumption and Lysine Uptake of HeLa Cells in the Presence of Metabolic Substrates and Inhibitors (培養 HeLa 細胞의 酸素消費量과 Lysine 吸收에 미치는 X-線 照射의 影響)

  • Kang, Yung-Sun;Ha, Doo-Bong;Ahn, Kyung-Ja
    • The Korean Journal of Zoology
    • /
    • v.11 no.3
    • /
    • pp.75-82
    • /
    • 1968
  • The effects of x-irradiation on the utilization of glucose, succinate, citrate and $\\alpha$-ketoglutarate, on the response of the cell metabolism to $NaN_3$ and DNP, and on the uptake of lysine in the presence or absence of the metabolitesor the inhibitors were studied using HeLa cells and the results are summarized as follows: 1. 200r of x-irradiation had no immediate effect on the oxygen consumption of cells. 2. The oxygen consumption was greatly stimulated by succinate, $\\alpha$-ketoglutarate and citraed and in decreasing order and x-irradiation caused no remarkable change in this order. 3. The respiratory response of the cell to the metabolic inhibitors seems to be altered by x-irradiation. 4. The initial rate of the uptake of lysine was markedly retarded and the accumulation of lysine in the cell was decreased by irradiation. 5. Glucose increased the lysine uptake whereas succinate had no effect and citrate and $\\alpha$-ketoglutarate reduced the absorption. X-irradiation did not alter this tendency. 6. The inhibitory effects of $NaN_3$ and DNP on the lysine uptake were quite different from those seen in the oxygen consumption.

  • PDF

Changes in Renal Brush-Border Sodium-Dependent Transport Systems in Gentamicin-Treated Rats

  • Suhl, Soong-Yong;Ahn, Do-Whan;Kim, Kyoung-Ryong;Kim, Jee-Yeun;Park, Yang-Saeng
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.4
    • /
    • pp.403-411
    • /
    • 1997
  • To elucidate the mechanism of gentamicin induced renal dysfunction, renal functions and activities of various proximal tubular transport systems were studied in gentamicin-treated rats (Fisher 344). Gentamicin nephrotoxicity was induced by injecting gentamicin sulfate subcutaneously at a dose of 100 $mg/kg{\cdot}day$ for 7 days. The gentamicin injection resulted in a marked polyuria, hyposthenuria, proteinuria, glycosuria, aminoaciduria, phosphaturia, natriuresis, and kaliuresis, characteristics of aminoglycoside nephropathy. Such renal functional changes occurred in the face of reduced GFR, thus tubular transport functions appeared to be impaired. The polyuria and hyposthenuria were partly associated with a mild osmotic diuresis, but mostly attributed to a reduction in free water reabsorption. In renal cortical brush-border membrane vesicles isolated from gentamicin-treated rats, the $Na^+$ gradient dependent transport of glucose, alanine, phosphate and succinate was significantly attenuated with no changes in $Na^+-independent$ transport and the membrane permeability to $Na^+$. These results indicate that gentamicin treatment induces a defect in free water reabsorption in the distal nephron and impairs various $Na^+-cotransport$ systems in the proximal tubular brush-border membranes, leading to polyuria, hyposthenuria, and increased urinary excretion of $Na^+$ and other solutes.

  • PDF

Optimization of gibberellic acid production by Methylobacterium oryzae CBMB20 (지베렐린산 생산을 위한 Methylobacterium oryzae CBMB20의 최적 배양조건 확립)

  • Siddikee, Md. Ashaduzzaman;Hamayun, Muhammad;Han, Gwang-Hyun;Sa, Tong-min
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.522-527
    • /
    • 2010
  • Gibberellic acid ($CA_3$) is used in many industries and constitutes the primary gibberellins produced by fungi and bacteria. However, there is no information on $CA_3$ production by Methylobacterium oryzae CBMB20, a novel plant growth promoting bacterium. We investigated the favorable carbon (C) and nitrogen (N) sources and ratios and cultural conditions, such as incubation temperature, pH of the culture medium, and incubation period for the maximum production of $CA_3$ by Methylobacterium oryzae CBMB20. Maximum $CA_3$ production was observed in ammonium mineral salt (AMS) broth supplemented with Na-succinate and $NH_4Cl$ as C and N sources, respectively. The maximum $CA_3$ production was found at the C/N ratio of 5:0.4 g $L^{-1}$. The highest $CA_3$ production was obtained when the bacterial culture was incubated at $30^{\circ}C$ for 96 h at pH 7.

Effect of Temperature on Dicarboxylate Transport in Plasma Membrane Vesicles of Rabbit Proximal Tubule

  • Han, Kyung-Moon;Kim, Young-Hee;Woo, Jae-Suk;Kim, Yong-Keun
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.227-232
    • /
    • 1993
  • The temperature dependence of $Na^+-dependent$ succinate uptake was studied in brush border (BBMV) and basolateral (BLMV) membrane vesicles isolated from the rabbit kidney cortex. The succinate uptake was markedly altered by temperature in a similar fashion in both membranes. The temperature dependence was characterized by a nonlinear Arrhenius plot with a break point at 22 and $25^{\circ}C$ for BBMV and BLMV, respectively. The activation energy was 3.91 and 17.09 kcal/mole at above and below the break point respectively, far BBMV; 2.65 and 14.05 kcal/mole, respectively, for BLMV. When temperature increased f개m 20 to $35^{\circ}C$, the Vmax of succinate transport increased from $3.49{\pm}0.11\;to\;5.90{\pm}0.86\;nmole/mg/5\;sec$ for BBMV and from $2.86{\pm}0.25\;to\;3.63{\pm}0.32\;nmole/mg/5\;sec$ for BLMV, with no change in Km in both membranes. These results suggest that renal dicarboxylate transport is similarly sensitive to a change in membrane physical state in BBMV and BLMV.

  • PDF

Photo-Fermentative Hydrogen Production by Rhodobacter Sphaeroides KD131 under Various Culture Conditions (다양한 배양조건에 따른 Rhodobacter sphaeroides KD131의 광발효 수소생산)

  • Son, Han-Na;Kim, Dong-Hoon;Lee, Won-Tae;Rhee, Young-Ha;Kim, Mi-Sun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.4
    • /
    • pp.451-457
    • /
    • 2011
  • Purple non-sulfur (PNS) bacterium $Rhodobacter$ $sphaeroides$ KD131 was studied with the aim of achieving maximum hydrogen production using various carbon and nitrogen sources at different pH conditions. Cells grew well and produced hydrogen using $(NH_4){_2}SO_4$ or glutamate as a nitrogen source in combination with a carbon substrate, succinate or malate. During 48h of photo-heterotrophic fermentation under 110$W/m^2$ illumination using a halogen lamp at $30^{\circ}C$, 67% of 30mM succinate added was degraded and the hydrogen yield was estimated as 3.29mol $H^2$/mol-succinate. However, less than 30% of formate was consumed and hydrogen was not produced due to a lack of genes coding for the formate-hydrogen lyase complex of strain KD131. Initial cell concentrations of more than 0.6g dry cell weight/L-culture broth were not favorable for hydrogen evolution by cell aggregation, thus leading to substrate and light unavailability. In a modified Sistrom's medium containing 30mM succinate with a carbon to nitrogen ratio of 12.85 (w/w), glutamate produced 1.40-fold more hydrogen compared to ammonium sulfate during the first 48h. However, ammonium sulfate was 1.78-fold more effective for extended cultivation of 96h. An initial pH range from 6.0 to 9.0 influenced cell growth and hydrogen production, and maintenance of pH 7.5 during photofermentation led to the increased hydrogen yield.

A Study of the Effects of Na Ion on Codeposition of Particles in the Formation of Electroless Ni Composite Coatings (무전해 Ni 복합도금에서 분말의 공석에 미치는 Na 이온의 영향)

  • 이원해;이승평
    • Journal of the Korean institute of surface engineering
    • /
    • v.22 no.2
    • /
    • pp.101-108
    • /
    • 1989
  • Effects of Na+ ion on zeta potential of SiC and Al2O3 particles suspended in nikel sufate and nickel chloride solutions were investigated. various complexing agents for Ni2+ ion were added to electroless Ni composite bath and the effects of the complexing agents on zeta potential and codeposition of the particles from the baths were studied. It was confirmed that Na+ ion was absorbed on the particles bringing about the positive surface charge and thus they promoted the entrapment of the particles into the nickel deposit. On the basis of these results it was possible to deposit SiCc particle in nickel chloride electrolyte containing complex agent such as trisodium citrate+sodium succinate.

  • PDF