• Title/Summary/Keyword: Na-cellulose

Search Result 293, Processing Time 0.029 seconds

Effect of Red Ginseng Water Extract on Trypsin Activity (홍삼 물추출물이 Trypsin 활성에 미치는 영향)

  • Lee, Jong-Won;Kim, Na-Mi;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.28 no.3
    • /
    • pp.127-131
    • /
    • 2004
  • This study was carried out to investigate the effect of red ginseng water extract (RGWE) on trypsin activity. After extraction of fat soluble and saponin component from red ginseng powder by methyl alcohol, the residue was extracted with distilled water, and manufactured to water extract. The extract was dialyzed with different molecular cut off membrane. Trypsin activity demonstrated the highest level at the RGWE concentration of 9${\times}$10$\^$-2/% in reaction mixture, and also increased to 15% at 2.9${\times}$10$\^$-3/%. Km value was decreased and Vmax was increased in the present of red ginseng water extract. Red ginseng water extract was partially purified by dialysis, Bio-Gel P-I0 and DEAE-cellulose column chromatography. The active fraction demonstrated positive reaction to ninhydrin, DNS and folin reaction.

CNS Durg-induced Redistribution of Lactate Dehydrogenase Isozymes in Mice (CNS drug에 의한 mouse 젖산수소이탈효소 동위효소의 재분포)

  • 염정주;김상엽
    • The Korean Journal of Zoology
    • /
    • v.32 no.1
    • /
    • pp.34-39
    • /
    • 1989
  • Ouabain, strychnine sulfate, caffeine sodium benzoate and chlorpromazine hydrochloride were introduced intraperitoneally into male mice for 7, 14 and 21 days to induce the changes in the relative percentages of lactate dehydrogenase isozymes. The five isozymes in brain, heart and kidney tissues were electrophoresed on cellulose acetate strip and subjected to densitometry. Ouabain caused a drastic increase of B$_4$isozymes only in brain tissues. The two stimulants altered the relative percentages of $A_4$and B$_4$isozymes conspicuously in brain tissues, whereas virtually no redistributions of five isozymes were occurred by the depressant except B$_4$isozymes in brain and heart tissues. On the basis of these observations, it might be suggested that the changes in intracellular concentration of sodium and calcium ions are not the cause of the isozyme redistributions and that Organization of plasma membrane could be one of the factors involved in the tissue specificity of lactate dehydrogenase isozymes in vertebrates.

  • PDF

Synthesis Conditions and Rheological Characteristics of Aluminum Magnesium Silicate (규산알루민산마그네슘의 합성조건과 유동학적 특성)

  • 신화우;정동훈
    • YAKHAK HOEJI
    • /
    • v.39 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • Aluminum magnesium silicate was synthesized by reacting the mixed solutions of sodium aluminate and magnesium chloride with sodium silicate solution in this study. The optimal synthesis conditions based on the yield of the product has been attained according to Box-Wilson experimental design. It was found that the optimal synthetic conditions of aluminum magnesium silicate were as follows: Reaction temperature=$69~81^{\circ}C$; concentration of two reactants, sodium aluminate and magnesium chloride= 13.95~14.44 w/w%; molar concentration ratio of the two reactants, [NaAlO$_{2}$]/MgCl$_{2}$]=3.63~4.00; reaction time= 12~15 min; drying temp. of the product=$70~76^{\circ}C$. Aluminum magnesium silicate synthesized under the optimal synthesis condition was dispersed in 0.75, 1.0 and 1.5w/w% aqueous solution or suspension of six dispersing agents, and the Theological properties of the dispersed systems prepared have been investigated at $15^{\circ}C$ and $25^{\circ}C$ using Brookfield LVT Type Viscometer. The acid-consuming capacity of the most excellent product was 272~278 ml of 0.1N-HCl per gram of the antacid. The flow types of 5.0 w/w% aluminum magnesium silicate suspension were dependent upon the kind and concentration of dispersing agents added. The apparent viscosity of the suspension was generally increased with concentration of dispersing agents and was not significantly changed or decreased as the temperature was raised. A dispersing agent, hydroxypropyl cellulose suspension, exhibited an unique flow behavior of antithixotropy. The flow behavior of the suspension dispersed in a given dispersing agent not always coincided with that of the dispersing agent solution or suspension itself.

  • PDF

Protein Production from Cellulosic Wastes by Mixed Culture of A. phoenices and C. utilis (Aspergillus phoenicis 및 candida utilis의 혼합배양에 의한 섬유소로부터의 단백질 생산)

  • 이영녹;박경량;이주실;배광성;백대홍
    • Korean Journal of Microbiology
    • /
    • v.19 no.1
    • /
    • pp.14-22
    • /
    • 1981
  • Protein content of cellulosic wastes, such as spent grain, hop bark, spent rye, rice straw, rice hull, saw dust and used newspaper, was increased by a mixed culture of C. utilis wastes having 66-75% moisture. Among the fungal strains tested. A.phoenicis KU175 was the most powerful to increase the protein content of A. phoenicis during the mixed culture with C. utilis in the CMC medium reached at the peak for one day culture after inoculation of the both strains at the same time, while it reached at peark from the beginning of the mixed culture, when A. phoenicis was inocultated for 12-24hours prior to the inoculation of C.utilis. To increase the protein content of the cellulosic wastes by the mixed culture of C.utilis and A.phoenicis, the inoculation of both strains at the same time was more effective than the preinoculation of A. phoenicis for 6-24 hours. Content of crude cellulose in the used newspaper, saw dust and spent grain was high relatively, and the lignin content of spent grain, spent rye, and rice strew was reduced more than half by the treatment of 2% NaOH. However, effect of alkali treatment of increase the protein content of the cellulosic wastes was not prominent in the case of mixed culture. Protein content of the cellulosic wastes was increased prominently by the mixed culture of C.utilis and A.phoenicis in semi-solid substrate, compared with the single culture of C. utilis, although the latter increased the protein content of cellulosic wastes considerably. The effect of mixed culture of C. utilis and A. phoenicis increased 4-fold the protein content of spent grain, and more than doubled crude protein in hop bark and rice straw.

  • PDF

Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island

  • Oh, Han Na;Lee, Tae Kwon;Park, Jae Wan;No, Jee Hyun;Kim, Dockyu;Sul, Woo Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1670-1680
    • /
    • 2017
  • Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge on the decomposition of lignocellulose occurring in a natural environment is insufficient. We analyzed the 16S rRNA gene and metagenome to understand how the lignocellulose is decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using single molecules real-time sequencing revealed that the assembled contigs determined originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy)- and Protein families (Pfam)-based analysis showed that Proteobacteria was involved in degrading whole lignocellulose, and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrates. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass, and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.

Isolation of Bacteria Associated with Fresh Sponges in Lake Baikal (바이칼 호수에 서식하는 담수 스폰지 내 공생세균의 분리)

  • Cho, Ahn-Na;Kim, Ju-Young;Ahn, Tae-Seok
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.spc
    • /
    • pp.39-47
    • /
    • 2014
  • Sponge in Lake Baikal is an unique organism. Microorganisms in sponges are assumed as precious resources for bioactive materials. For understanding the bacterial community in Baikalian sponges by cultivation, 92 strains of bacteria were isolated from lake water and 2 species of sponges, Baikalospongia sp. and Lubomirskia sp., Thirty five bacterial strains are isolated from ambient water near the sponge, 27 bacterial strains from Baikalospongia sp., 30 bacterial strains from Lubomirskia sp.. As a result, 78.3% and 57.6% of isolated bacterial strains has amylase and protease activity respectively, while strains with cellulose and lipase activities were 38.0% and 34.8%. By 16S rRNA sequence analysis of selected strains, 13 strains which were isolated from Baikalospongia sp. were belong to Pseudomonas spp.. Whereas, 14 strains which were isolated from Lubomirskia sp. were Pseudomonas spp., Buttiauxella agrestis, Pseudomonas fluorescens, Yersinia ruckeri, Bacillus spp., Paenibacillus spp., Bacillus thuringiensis, Bacillus simplex, Brevibacterium spp., Acinetobacter lwoffii. In culture media, Pseudomonas spp. dominance was supposed that according to allelophathy.

Partial Purification and Characterization of Superoxide Dismutase from Tomato (Lycopersicon esculentum) Fruit

  • Kumar, Sunil;Dhillon, Santosh;Singh, Dharam;Singh, Randhir
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.3
    • /
    • pp.283-288
    • /
    • 2004
  • Superoxide dismutase (SOD) from tomato (Lycopersicon esculentum Mill.) fruit was purified by ammonium sulphate precipitation, Sephadex G-100 and DEAE-cellulose column chromatographies. A 22 fold purification and an overall yield of 44% were achieved. The purified enzyme was a homodimer with Mr 37.1 kDa and subunit Mr 18.2 kDa as judged by SDS-PAGE. SOD showed $K_{m}$ values of 25 ${\times}$ 10$^{-6}$ M and 1.7 ${\times}$ 10$^{-6}$ M for nitroblue tetrazolium (NBT) and riboflavin as substrates, respectively. The enzyme was thermostable upto 5$0^{\circ}C$ and exhibited pH optima of 7.8. The effect of metal ions and some other compounds on enzyme activity was studied. $Co^{2+}$ and $Mg^{2+}$ were found to enhance relative enzyme activities by 27 % and 73 %, respectively, while M $n^{2+}$ inhibited the SOD activity by 64%. However, $Ca^{2+}$ and C $u^{2+}$ had no effect on enzyme activity. Other compounds like $H_2O$$_2$ and Na $N_3$ inhibited enzymatic activities by 60% and 32%, respectively, while sodium dodecyl sulphate (SDS), chloroform plus ethanol and $\beta$-mercaptoethanol had no effect on the activity of SOD. of SOD.

Isolation and Identification of Alkalophilic Microorganism Producing Xylanase (Xylanase를 생산하는 호알칼리성 균주의 분리 및 동정)

  • Choi, Ji-Hwi;Bai, Dong-Hoon
    • Food Engineering Progress
    • /
    • v.14 no.3
    • /
    • pp.263-270
    • /
    • 2010
  • An alkalophilic microorganism named DK-2386, which produces xylanase, was isolated from soil of Taejo-mountain, Cheonan-si, Chungnam, Korea. The isolated strain was characterized as Gram-positive, with size of 0.4${\times}$2.5 ${\mu}$m, spore forming, anaerobic, catalase positive, possessed with hydrolysis abilities of casein, starch, sodium carboxy methyl cellulose, and xylan, reduction of nitrate to nitrite, resistant against lysozyme, urease positive, and motility positive. The color of culture broth was reddish yellow. The strain DK-2386 was identified as Bacillus agaradhaerens by whole cell fatty-acid composition analysis and 16S rDNA sequence analysis. However, it was not identical to Bacillus agaradhaerens 40952 obtained from the Korean Culture Center of Microorganism in its colour of culture broth. Therefore, we have named the newly isolated strain as Bacillus agaradhaerens DK-2386.

Knowledge Distribution of Business and Science for Development of Packaging from Water Hyacinth

  • UDOMPHOCH, Phinyo;WONGSIRI, Charoensap;MANEEDANG, Weerapattra;PORMSILA, Worapan
    • Journal of Distribution Science
    • /
    • v.20 no.8
    • /
    • pp.81-91
    • /
    • 2022
  • Purpose: The work aimed to integrate and distribute the knowledge of marketing and chemistry for product development, in which individual packaging from water hyacinth was ideal. Research design, data, and methodology: A customer perception was surveyed to guide the preparation process, and eco-packaging preparation followed the perception study. The satisfaction with the packaging using the 4Ps was determined. Results: 159 samples participated in the survey to establish their perceptions. They perceived that eco-packaging was a friendly environment with a score of 4.47. The uses of chemicals and water were less. The design for other functions than a normal function of packaging was preferred. The pulping was done using 3.0 M NaOH. The natural additives of carboxymethyl cellulose (defibering) and corn starch (adhesive) were desired. The paper was characterized according to The National Standard of Kraft paper and was equivalent to the liner board. The prototype of packaging was fabricated as individual packaging. The marketing mix was used to survey 200 samples. The satisfaction with the product was the maximum at 4.53, while the minimum was on price. The online channel was preferred to access the product. Conclusions: Water hyacinth could be added value as eco-packaging that the qualities of pulp were equal to the Kraft paper. Individual packaging from water hyacinth was satisfied.

Study on Affecting Variables Appearing through Chemical Pretreatments of Poplar Wood (Populus euramericana) to Enzymatic Hydrolysis (이태리 포플러의 화학적 전처리 공정을 통한 효소가수분해 영향 인자 분석)

  • Koo, Bon-Wook;Park, Nahyun;Yeo, Hwanmyeong;Kim, Hoon;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.255-264
    • /
    • 2009
  • To evaluate the effects of chemical pretreatments of lignocellulosic biomass on enzymatic hydrolysis process, Populus euramericana was pretreated for 1 hr with 1% sulfuric acid ($H_2SO_4$) at $150^{\circ}C$ and 1% sodium hydroxide (NaOH) at $160^{\circ}C$, respectively. Before the enzymatic hydrolysis, each pretreated sample was subjected to drying process and thus finally divided into four subgroups; dried or non-dried acid pretreated samples and dried or non-dried alkali pretreated samples and chemical and physical properties of them were analyzed. Biomass degradation by acid pretreatment was determined to 6% higher compared to alkali pretreatment. By the action of acid ca. 24.5% of biomass was dissolved into solution, while alkali degraded ca. 18.6% of biomass. However, reverse results were observed in delignification rates, in which alkali pretreatment released 2% more lignin fragment from biomass to the solution than acid pretreatment. Unexpectedly, samples after both pretreatments were determined to somewhat higher crystallinity than untreated samples. This result may be explained by selective disrupture of amorphous region in cellulose during pretreatments, thus the cellulose crystallinity seems to be accumulated in the pretreated samples. SEM images revealed that pretreated samples showed relative rough and partly cracked surfaces due to the decomposition of components, but the image of acid pretreated samples which were dried was similar to that of the control. In pore size distribution, dried acid pretreated samples were similar to the control, while that in alkali pretreated samples was gradually increased as pore diameter increased. The pore volume which increased by acid pretreatment rapidly decreased by drying process. Alkali pretreatment was much more effective on enzymatic digestibility than acid pretreatment. The sample after alkali pretreatment was enzymatically hydrolyzed up to 45.8%, while only 26.9% of acid pretreated sample was digested at the same condition. The high digestibility of the sample was also influenced to the yields of monomeric sugars during enzymatic hydrolysis. In addition, drying process of pretreated samples affected detrimentally not only to digestibility but also to the yields of monomeric sugars.