• Title/Summary/Keyword: Na-P

Search Result 7,919, Processing Time 0.047 seconds

Removal of Copper ton by Na-P1 Synthesized from Jeju scoria (제주 스코리아로부터 합성된 Na-P1 제올라이트에 의한 Cu 이온 제거)

  • 감상규;홍정연;현성수;안병준;이민규
    • Journal of Environmental Science International
    • /
    • v.11 no.1
    • /
    • pp.75-83
    • /
    • 2002
  • The removal performance of copper ion was studied using Na-P1 zeolites synthesized from Jeju scoria. The scoria which is found in large amounts in Jeju Island, was sampled at four regions, Jeju-shi Bonggae-dong(A). Pukcheju-gun Hanlim-eup Sangmyong-ri Mangoreum(B), Pukcheju-gun Hanlim-eup Keumag-ri(C) and Namcheju-gun Andeok-myun Dongkwang-ri(D). Synthetic Na-P1 zeolites used in this study were more effective than natural zeolite and scoria for the removal of copper ion. The removal performances of copper ion decreased in the order of Na-P1(D) > Na-P1(C) > Na-P1(B) > Na-P1(A) among Na-P1 synthesized from the scoria according to region. These results showed the same trend with cation exchange capacity(CEC) for each synthetic zeolite, i.e., the synthetic Na-P1 zeolite with a higher CEC showed a higher removal performance. The effective diffusion coefficients of copper ion by synthetic Na-P1 zeolites were one hundred and ten times higher than those by a pure zeolite 4A and the zeolite A synthesized from coal fly ash, respectively.

Synthetic study of Zeolites from Some Glassy Rocks (I) L Low-Temperature Hydrothermal Synthesis of Zeolites Na-P, Na-X, and Na-A (유리질 암석으로부터 제올라이트 합성에 광한 연구 (I) : Na-P, Na-X 및 Na-A 제올라이트의 저온 수열 합성)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.7-17
    • /
    • 1990
  • 화산 유리질 암석을 출발 물질로 사용하여 저온 ($80^{\circ}C$)에서 수열 처리하여 Na-P Na-X 및 Na-A 제올라이트를 합성하였다. 합성과정은 (1) 유리질 분말 시료와 알칼리 용액과의 용해.변질 반응에 의한 1차적인 Na-P의 합성 방식과 (2) 여기서 잔류된 규산질 모액에 Al(OH)3나 NaAlO2의 수용액을 공급하여 보다 고순도의 Na-P, Na-X 및 Na-A를 효과적으로 합성할 수 있었다. 원암의 암상과 조성은 제올라이트들의 화학 조성과 순도 및 백색도같은 물리적 특성에는 영향을 주지만, 합성된 제올라이트의 광물종을 규제하는 주된 요인은 아닌 것으로 해석된다. 합성된 제올라이트의 광물상은 반응 용액의 pH, Al(OH)4 및 Na+에 대한 농도 조건에 주로 의존되는 경향을 나타낸다. 또한 화산 유리질 암석을 제올라이트 합성원료로 활용하는 데에 있어서 (2)와 같음 합성 방안이 보완적으로 시행되면 그 생산성과 효율성을 제고시킬 수 있을 것으로 여겨진다.

  • PDF

Effect of pH on PAH Transport in Brush Border Basolateral Membrane Vesicles of Rabbit Proximal Tubule (가토 신장 근위세뇨관의 Brush Border 및 Basolateral Membrane Vesicle에서 PAH 이동에 미치는 pH의 영향)

  • Kim, Yong-Keun;Woo, Jae-Suk;Lee, Sang-Ho
    • The Korean Journal of Physiology
    • /
    • v.22 no.2
    • /
    • pp.281-293
    • /
    • 1988
  • The effect of pH on the rate of PAH uptake was studied in rabbit renal basolateral membrane vesicles (BLMV) and brush border membrane vesicles (BBMV). In the absence of Na in incubation medium, a decrease in external $pH(pH_0)$ led to an increase in probenecid-sensitive PAH uptake by BLMV. In the presence of Na, the probenecid-sensitive PAH uptake was unaltered when the $pH_0$ decreased from 8.0 to 6.0 but further decrease in $pH_0$ to 5.5 increased significantly the uptake. The probenecid-sensitive PAH uptake was not affected by an alteration in pH per se in the absence of a pH gradient with or without the presence of Na. However, the presence of Na stimulated the probenecid-sensitive PAH uptake in all pH ranges tested over that measured in the absence of Na. A similar pattern of pH dependence on the PAH uptake was observed in BBMV but the presence of Na did not alter the probenecid-sensitive PAH uptake in the presence and absence of a pH gradient. Kinetic analysis for BLMV showed that Na or pH gradient increased Vmax of the probenecid-sensitive PAH uptake without a change in Km value. These results suggest that PAH is transported by $OH^-/PAH$ exchange process in the luminal membrane, but the pH dependence in the BLMV is not unequivocally consistent with an anion exchange process. The PAH transport is dependent on Na in BLMV but not in BBMV.

  • PDF

Effects of NaCl Concentration on Physicochemical Properties of Pork Emulsion (NaCl 첨가량에 따른 돈육 유화물의 이화학적 특성)

  • Park, Sin-Young;Kim, Hack-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.4
    • /
    • pp.551-556
    • /
    • 2016
  • This study was conducted to investigate the effects of NaCl concentration on the physicochemical properties of pork emulsion. Pork emulsion was produced containing 0% (control), 0.3%, 0.6%, 0.9%, 1.2%, and 1.5% NaCl. Proximate composition of pork emulsion containing 1.5% NaCl showed the highest moisture content (P<0.05). The ash contents of pork emulsion increased with an increase in NaCl, and protein contents decreased with increasing NaCl concentration. The pH levels of uncooked pork emulsion containing 0.9%, 1.2%, and 1.5% NaCl were lower than those of other treatments (P<0.05), and the pH level of cooked pork emulsion containing NaCl was lower than that of the control (P<0.05). The CIE $L^*$ value of the uncooked pork emulsion samples containing NaCl was higher than that of the control (P<0.05), whereas CIE $a^*$ and CIE $b^*$ values of samples with NaCl were lower than the control (P<0.05). CIE $L^*$ and CIE $b^*$ values of cooked pork emulsion decreased with an increase in NaCl level, and CIE $a^*$ value increased with increasing NaCl concentration (P<0.05). Viscosity of the pork emulsion increased with an increase in NaCl. Texture profile analysis of pork emulsion containing NaCl showed no significant difference in springiness or cohesiveness (P>0.05). Pork emulsion containing 1.5% NaCl showed the highest hardness, gumminess, and chewiness (P<0.05). These results suggest that pork emulsion containing 0.9% and 1.2% NaCl can be used as a low-salt meat product.

Hydrothermal Synthetic Study of Zeolites from Siliceous Mudstone (규질 이암으로부터 제올라이트의 수열 합성에 관한 연구)

  • 노진환
    • Journal of the Mineralogical Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.171-185
    • /
    • 2000
  • Siliceous mudstones are embedded on a large scale in the Tertiary formations of Pohang area. Some useful zeolites such as NsP, (Na, TMA)P, analcime and hydroxysodalite were synthesized from the siliceous mudstones by treating with the variety of solution, i.e ., NaOH, NaOH+NaCl, NaOH, NaOH+$NaAlO_2$and NaOH+TMAOH at the low-temperature hydrothermal system ranging 60~12$0^{\circ}C$. Major precursor of zeolites is found as opal-CT in the zeolite-forming reaction. Smectite, which is included in considerable amounts in the mudstone, appears to play a major role of Al-source in the zeolite synthesis. In comparison, chalcedonic quartz and mica are rather insoluble in alkaline solution, and thus, these are observed as major impurities in the reaction products. An addition of $NaAlO_2$to NaOH solution is effective for eliminating these impurities in the reaction procedure, through these are partly dissolved when elevating the reaction temperature, concentration, and time. Phase change from NaP to hydroxysodalite takes place at the NaOH concentrations of 3.0~4.0 M, and the reaction is not sensitive to the temperature shift. NaP is more stable at lower NaOH concentration and higher activity of $Na_{+}$ whereas analcime is sensitive to the temperature change and stable at higher than $100^{\circ}C$ and 2.0~4.0 M in NaOH concentration. For the pure NaP synthesis without any other products, the treatment of mudstones with 1:1 solution of NaOH and $NaAlO _2$ turns out to be quite effective. NaP was successfully synthesized together with analcime at $100^{\circ}C$ as well as lower concentrations of NaOH+NaCl solution. In addition, the organic type, (Na, TMA)P was formed together with smectite in the 1:1 solution of NaOH and TMAOH.

  • PDF

Triclinic Na3.12Co2.44(P2O7)2 as a High Redox Potential Cathode Material for Na-Ion Batteries

  • Ha, Kwang-Ho;Kwon, Mi-Sook;Lee, Kyu Tae
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.187-194
    • /
    • 2020
  • Two types of sodium cobalt pyrophosphates, triclinic Na3.12Co2.44(P2O7)2 and orthorhombic Na2CoP2O7, are compared as high-voltage cathode materials for Na-ion batteries. Na2CoP2O7 shows no electrochemical activity, delivering negligible capacity. In contrast, Na3.12Co2.44(P2O7)2 exhibits good electrochemical performance, such as high redox potential at ca. 4.3 V (vs. Na/Na+) and stable capacity retention over 50 cycles, although Na3.12Co2.44(P2O7)2 delivered approximately 40 mA h g-1. This is attributed to the fact that Na2CoP2O7 (~3.1 Å) has smaller diffusion channel size than Na3.12Co2.44(P2O7)2 (~4.2 Å). Moreover, the electrochemical performance of Na3.12Co2.44(P2O7)2 is examined using Na cells and Li cells. The overpotential of Na cells is smaller than that of Li cells. This is due to the fact that Na3.12Co2.44(P2O7)2 has a smaller charge transfer resistance and higher diffusivity for Na+ ions than Li+ ions. This implies that the large channel size of Na3.12Co2.44(P2O7)2 is more appropriate for Na+ ions than Li+ ions. Therefore, Na3.12Co2.44(P2O7)2 is considered a promising high-voltage cathode material for Na-ion batteries, if new electrolytes, which are stable above 4.5 V vs. Na/Na+, are introduced.

Synthesis of Highly Pure Na-P1 Zeolite by NaOH Fusion Treatment of Fly Ash (Fly ash의 NaOH 용융처리에 의한 고순도 Na-P1 Zeolite의 합성)

  • Choi, Choong-Lyeal;Lee, Dong-Hoon;Lee, In-Jung;Shin, Dong-Hyun;Kim, Jang-Eok;Park, Man
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.3
    • /
    • pp.232-237
    • /
    • 2005
  • This study was conducted to elucidate the effects of NaOH fusion treatment on Na-P1 zeolite synthesis from fly ash and to evaluate its optimal condition. NaOH fusion treatment of fly ash led to Na-P1 zeolite with shorter reaction time and higher quality compared that of simple hydrothermal method. Mixed zeolite phases of Na-P1 and hydroxy sodalite were formed by the fusion treatment below $450^{\circ}C$, whereas only Na-P1 zeolite was formed above $550^{\circ}C$. Ratio of NaOH/fly ash, reaction times, fusion temperature and solid/liquid ratio strongly affected the kind and crystallinity of the zeolite formed. The CEC of Na-P1 zeolite formed at the optimum reaction conditions of NaOH/fly ash ratio 0.9 and solid/liquid ratio $1/5.0{\sim}1/7.5$ after NaOH fusion treatment at $550^{\circ}C$ for 2 hours was about $398cmol^+kg^{-1}$ which was 40% higher than those of control products. Therefore, it is clear that NaOH fusion treatment of fly ash in open system could lead to Na-P1 zeolite with high purity.

$P^{32}$ Adsorption on Na-zeolite in Different Ionic Strengths (토양개량제(土壤改良劑)인 Zeolite에 의(依)한 인(燐)의 흡착(吸着))

  • Choi, Jyung
    • Applied Biological Chemistry
    • /
    • v.25 no.2
    • /
    • pp.99-104
    • /
    • 1982
  • Natural zeolite rock was pulverized and dispersed in water. Clay fraction was collected by sedimentation method. The dominant clay mineral was Clinoptiolite with some Mordenite and Smectite. $P^{32}$ adsorption on Na-zeolite was determined in different ionic strengths using $P^{32}$ isotope by sludge method. The lower the pH of suspension, the longer the contact time, and the more the amount of zeolite, the more inorganic P was adsorbed by Na-zeolite, whereas the more P adsorption per unit gram of zeolite was observed at a 100mg addition than a 200mg in same volume of P-NaCl solution (20ml), indicating that the whole positively charged surface of Na-zeolite was not occupied by inorganic P. Furthermore, the more P adsorption on Na-zeolite was observed in higher ionic strength than in the lower. The maximum P adsorption on Na-zeolite was about 1me/g, and the zero point charge (ZPC) is assumed to be below pH 3.7.

  • PDF

Synthesis of Columnar Na-P Zeolite by Hydrothermal Process from Natural Zeolite of Korea (천연 Zeollte로부터 열수합성에 의한 주상 Na-P Zeolite합성)

  • Zhang, Yong-Seon;Jung, Pil-Kyun;Kim, Sang-Hyo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.6
    • /
    • pp.357-366
    • /
    • 2003
  • This study was conducted to develop n convenient and efficient granular type absorbent with high CEC from powdery zeolite, which is a waste produced while crushing the natural zeolite of Korea to get a particular particle size. The change of mineralogical characteristics during hydrothermal alternation of natural zeolite to Na-P zeolite in alkaline solution at various reaction times was determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and total elemental analysis. The columnar aggregate of Na-P Zeolite was produced by calcinating the natural zeolite-charcoal extrudates of about 3 mm diameter. In 24 hours reaction, clinoptillonite, mordenite and feldspar in natural zeolite were disappeared by 3 N NaOH treatment, while Na-P Zeolite with spherical granular structure was newly detected by XRD. As increasing reaction time, Si/Al ratio in remaining solution was deceased. The CEC of the synthesized material increased more than 2 times compared with that of natural zeolite, although the diameter of Na-P zeolite were rather increased.

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions (고농도 NaBH4 수용액에서 비담지 촉매의 가수분해 반응 특성)

  • Lee, Hye-Ri;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.587-592
    • /
    • 2016
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.