Browse > Article
http://dx.doi.org/10.9713/kcer.2016.54.5.587

Characteristics of Hydrolysis Reaction Using Unsupported Catalyst at High Concentration of NaBH4 Solutions  

Lee, Hye-Ri (Department of Chemical Engineering, Sunchon National University)
Na, Il-Chai (CNL Energy Co)
Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
Publication Information
Korean Chemical Engineering Research / v.54, no.5, 2016 , pp. 587-592 More about this Journal
Abstract
Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for portable proton exchange membrane fuel cells (PEMFCs). Properties of $NaBH_4$ hydrolysis reaction using unsupported Co-P-B Co-B, catalyst at high concentration $NaBH_4$ solution were studied. In order to enhance the hydrogen generation yield at high concentration of $NaBH_4$, the effect of catalyst type, $NaBH_4$ concentration and recovery of condensing water on the hydrogen yield were measured. The yield of hydrogen evolution increased as the boron ratio increased in preparation process of Co-P-B catalyst. The hydrogen yield decreased as the concentration increased from 20 wt% to 25 wt% in $NaBH_4$ solution during hydrolysis reaction using 1:5 Co-P-B catalyst. Maximum hydrogen yield of 96.4% obtained by recovery of condensing water and thinning of catalyst pack thickness in reactor using Co-P-B with Co-B catalyst and 25 wt% $NaBH_4$ solution.
Keywords
borohydride; Unsupported catalyst; High concentration; Hydrogen yield; Proton exchange fuel cell;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Commercial Drones: Highways in the Sky, Unmanned Aerial Systems (UAS), Market Shares, Strategies, and Forecasts, Worldwide, 2015 to 2021, :http//wintergreenresearch.com/reports/CommercialUAS.html.
2 Bradley, T. H., Moffitt, B. A., Mavris, D. N., Parekh, D. E., "Development and Experimental Characterization of a Fuel Cell Powered Aircraft," J. Power Sources, 171, 793-801(2007).   DOI
3 Liu, B. H. and Li, Z. P., "A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction," J. Power Sources, 187, 527-534(2009).   DOI
4 Fernandes, R., Patel, N., Miotello, A. and Filippi, M., "Studies on Catalytic Behavior of Co-Ni-B in Hydrogen Production by Hydrolysis of $NaBH_4$," Journal of Molecular Catalysis A: chemical, 298, 1-6(2009).   DOI
5 Fernandes, R., Patel, N., Miotello, A., Jaiswal, R. and Korthari, D. C., "Stability, Durability, and Reusability Studies on Transition Metal-doped Co-B Alloy Catalysts for Hydrogen Production," Int. J. Hydrogen Energy, 36, 13379-13391(2011).   DOI
6 Fernandes, R., Patel, N. and Miotello, A., "Hydrogen Generation by Hydrolysis of Alkaline $NaBH_4$ Solution with Cr-promoted Co-B Amorphous Catalyst," Applied Catalysis B: Environmental., 92, 68-74(2009).   DOI
7 Fernandes, R., Patel, N. and Miotello, A., "Efficient Catalytic Properties of Co-Ni-P-B Catalyst Powders for Hydrogen Generation by Hydrolysis of Alkaline Solution of $NaBH_4$," Int. J. Hydrogen Energy, 34, 2893-2900(2009).   DOI
8 Moon, G. Y., Lee, S. S., Yang, G. R. and Song, K. H., "Effects of Organic Acid Catalysts on the Hydrogen Generation from $NaBH_4$," Korean J. Chem. Eng., 27(2), 474-479(2010).   DOI
9 Ye, W., Zhang, H., Xu, D., Ma, L. and Yi, B., "Hydrogen Generation Utilizing Alkaline Sodium Borohydride Solution and Supported Cobalt Catalyst," J. Power Sources, 164, 544-548(2007).   DOI
10 Demirci, U. B. and Garin, F., "Ru-based Bimetallic Alloys for Hydrogen Generation by Hydrolysis of Sodium Tetrahydroborate," J. Alloys and Compounds, 463, 107-111(2008).   DOI
11 Gilson, P., Monteleone, G. and Prosini, P. P., "Hydrogen Production from Solid Sodium Borohydride," Int. J. Hydrogen Energy, 34, 929-937(2009).   DOI
12 Sim, W. J., Jo, J. Y., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Stability of $NaBH_4$ Solution during Storage Process," Korean Chem. Eng. Res, 48(3), 322-326(2010).
13 Hwang, B. C., Cho, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Durability of Co-P-B/Cu Catalyst for $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 50(4), 627-631(2012).   DOI
14 Hwang, B. C., Jo, A. R., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "$NaBH_4$ Hydrolysis Reaction Using Co-P-B Catalyst Supported on FeCrAlloy," Korean Chem. Eng. Res., 51(1), 35-41(2013).   DOI
15 Hwang, B. C., Sin, S. J., Choi, D. K., Nam, S. W. and Park, K. P., "Study on the Hydrogen Yield of $NaBH_4$ Hydrolysis Reaction," Korean Chem. Eng. Res., 49(5), 516-520(2011).   DOI
16 Oh, S. J., Jung, H. S., Jeong, J. J., Na, I. C., Ahn, H. G. and Park, K. P., "Hydrolysis Reaction of $NaBH_4$ using Unsupported Co-B, Co-P-B Catalyst," Korean Chem. Eng. Res., 53(1), 11-15(2015).   DOI