• 제목/요약/키워드: Na-Beta Batteries

검색결과 6건 처리시간 0.021초

The Effect of Lithia Addition on the Sodium Ion Conductivity of Vapor Phase Converted Na-β"-alumina/YSZ Solid Electrolytes

  • Sasidharanpillai, Arun;Kim, Hearan;Cho, Yebin;Kim, Dongyoung;Lee, Seungmi;Jung, Keeyoung;Lee, Younki
    • 전기화학회지
    • /
    • 제25권4호
    • /
    • pp.191-200
    • /
    • 2022
  • Na-β"-Al2O3 has been widely employed as a solid electrolyte for high-temperature sodium (Na) beta-alumina batteries (NBBs) thanks to its superb thermal stability and high ionic conductivity. Recently, a vapor phase conversion (VPC) method has been newly introduced to fabricate thin Na-β"-Al2O3 electrolytes by converting α-Al2O3 into β"-Al2O3 in α-Al2O3/yttria-stabilized zirconia (YSZ) composites under Na+ and O2- dual percolation environments. One of the main challenges that need to be figured out is lowered conductivity due to the large volume fraction of the non-Na+-conducting YSZ. In this study, the effect of lithia addition in the β"-Al2O3 phase on the grain size and ionic conductivity of Na-β"-Al2O3/YSZ solid electrolytes have been investigated in order to enhance the conductivity of the electrolyte. The amount of pre-added lithia (Li2O) precursor as a phase stabilizer was varied at 0, 1, 2, 3, and 4 mol% against that of Al2O3. It turns out that ionic conductivity increases even with 1 mol% lithia addition and reaches 67 mS cm-1 at 350 ℃ of its maximum with 3 mol%, which is two times higher than that of the undoped composite.

금속알콕시이드로부터 $\beta$-Alumina의 생성 (Formation of Beta-Alumina from Metalkoxide)

  • 공용식;문종수;이서우
    • 한국세라믹학회지
    • /
    • 제25권2호
    • /
    • pp.136-142
    • /
    • 1988
  • β-Al2O3, which is used for solid electrolyte membrances in sodium-sulfur batteries, was prepared by sol-gel process. Sodium-n-propoxide NaOC3H7 and aluminum-isopropoxide Al(OC3H7)3 were hydrolyzated in the solution at pH 3, pH 7, pH 9 and pH 11, respectively. The sol-gel processed samples were calcined at several temperature steps, respectively and analysed by thermal analyser(DT-TGA), infrared spectrum analyser and X-ray diffraction analyser. The gelling rate of solution at pH 7 was much higher than that of the solution at pH 3. Thermal exchanging behavior of the gels at pH 3 were similar to Na2O·Al2O3·6H2O and, above pH 7, were similar to Na2O·Al2O3·3H2O. When samples' composition ratio was 9.13 : 90.87 [NaOC3H7:Al(OC3H7)3] at pH 7, β-Al2O3 was formed at 1100℃.

  • PDF

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah

  • Lee, Dong-Geun;Ahn, Byeong-Min;Ahn, Cheol-Woo;Choi, Joon-Hwan;Lee, Dae-Han;Lim, Sung-Ki
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권4호
    • /
    • pp.398-405
    • /
    • 2021
  • To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.

후막 Na β"-Alumina 복합 고체 전해질 및 Gel-Type 유황 양극을 활용한 상온형 Na-S 전지의 특성 평가 (Room Temperature Na/S Batteries Using a Thick Film of Na β"-Alumina Composite Electrolyte and Gel-Type Sulfur Cathode)

  • 이진실;유학균;이윤기;김재광;주종훈
    • 한국전기전자재료학회논문지
    • /
    • 제33권5호
    • /
    • pp.411-417
    • /
    • 2020
  • In this study, we introduce a Na β"-alumina composite thick film as a solid electrolyte, to reduce the resistance of electrolyte for a Na/S battery. An alumina/zirconia composite material was used to enhance the mechanical properties of the electrolyte. A solid electrolyte of about 40 ㎛ thick was successfully fabricated through the conversion and tape-casting methods. In order to investigate the effect of the surface treatment process of the solid electrolyte on the battery performance, the electrolyte was polished by dry and wet processes, respectively, and then the Na/S batteries were prepared for analyzing the battery characteristics. The battery with the dry process performed much better than the battery made with the wet process. As a result, the battery manufactured by the dry process showed excellent performance. Therefore, it is confirmed that the surface treatment process of the solid electrolyte has an important effect on the battery capacity and coulombic efficiency, as well as the interface reaction.

Layered $LiCo_{x}Mn_{1-x}O_{2}$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_{2}$(0 ${\times}$ 0.14) oxides have been synthesized by hydrothermal treatment of $(Co_{x}Mn_{1-x})_{3}O_{4}$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}-NaMnO_{2}$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_{2}$, comparing to orthorhombic $LiMnO_2$.

  • PDF

Layered $LiCo_{x}Mn_{1-x}O_2$ as Cathode Materials for Li-Ion Batteries

  • Kumagai, Naoaki;Myung, Seung-Taek;Komaba, Shinichi
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집
    • /
    • pp.7-10
    • /
    • 2001
  • Orthorhombic type $LiCo_{x}Mn_{1-x}O_2$ (0 x 0.14) oxides have been synthesized by hydrothermal treatment of ($Co_{x}Mn_{1-x}$)$_3O_4$ precursors and LiOH aqueous solution at $170^{\circ}C$. As-synthesized powders showed well-ordered ${\beta}$-$NaMnO_2$ structures, and the products were single crystalline particle oxides from TEM observations. The particle size decreased with increasing the amount of Co substituent. Much more improved capacity upon 100 cyclings was clearly seen in orthorhombic $LiCo_{0.1}Mn_{0.9}O_2$, comparing to orthorhombic $LiMnO_2$.

  • PDF