Browse > Article
http://dx.doi.org/10.33961/jecst.2021.00059

Fabrication of a Full-Scale Pilot Model of a Cost-Effective Sodium Nickel-Iron Chloride Battery Over 40 Ah  

Lee, Dong-Geun (Department of Materials Chemistry and Engineering, Konkuk University)
Ahn, Byeong-Min (Korea Institute of Materials Science (KIMS))
Ahn, Cheol-Woo (Korea Institute of Materials Science (KIMS))
Choi, Joon-Hwan (Korea Institute of Materials Science (KIMS))
Lee, Dae-Han (Department of Materials Chemistry and Engineering, Konkuk University)
Lim, Sung-Ki (Department of Materials Chemistry and Engineering, Konkuk University)
Publication Information
Journal of Electrochemical Science and Technology / v.12, no.4, 2021 , pp. 398-405 More about this Journal
Abstract
To fabricate a full-scale pilot model of the cost-effective Na-(Ni,Fe)Cl2 cell, a Na-beta-alumina solid electrolyte (BASE) was developed by applying a one-step synthesis cum sintering process as an alternative to the conventional solid-state reaction process. Also, Fe metal powder, which is cheaper than Ni, was mixed with Ni metal powder, and was used for cathode material to reduce the cost of raw material. As a result, we then developed a prototype Na-(Ni,Fe)Cl2 cell. Consequently, the Ni content in the Na-(Ni,Fe)Cl2 cell is decreased to approximately (20 to 50) wt.%. The #1 prototype cell (dimensions: 34 mm × 34 mm × 235 mm) showed a cell capacity of 15.9 Ah, and 160.3 mAh g-1 (per the Ni-Fe composite), while the #2 prototype cell (dimensions: 50 mm × 50 mm × 335 mm) showed a cell capacity of 49.4 Ah, and 153.2 mAh g-1 at the 2nd cycle.
Keywords
Na-Beta Batteries; Sodium Nickel-Iron Chloride Battery; Na-Beta-Alumina; One-Step Synthesis Cum Sintering Process;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. T. Lee, D. H. Lee, S. M. Lee, S. S. Han, S. H. Lee, S. K. Lim, Bull. Mater. Sci., 2016, 39(3), 729-735   DOI
2 S. T. Lee, D. H. Lee, J. S. Kim, and S. K. Lim, Met. Mater. Int., 2017, 23(2), 246-253.   DOI
3 D. H. Lee, J. S. Kim, Y. H. Kim, S. K. Lim, Materials Science/Medziagotyra, 2021, 27(1), 68-76.
4 D. H. Lee, S. S. Han, Y. H. Kim, S. K. Lim, J Ind Eng Chem., 2019, 76, 366-373.   DOI
5 J. Fally, C. Lasne, Y. Lazennec, P. Margotin, J. Electrochem. Soc., 1973, 120(1), 1292.   DOI
6 K. Jung, H. Chang, Jeffery F. Bonnett, Nathan L. Canfield, Vincent L. Sprenkle, Guosheng Li, J. Power Sources., 2018, 396, 297-303.   DOI
7 T. M. O'Sullivan, C. M. Bingham and R. E. Clark, International Symposium on Power Electronics Electric Drives Automation and Motion (SPEEDAM), Institution of Electronic and Electrical Engineers., 2006.
8 Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev., 2011, 111(5), 3577-3613.   DOI
9 J. E. Battles, Int. Mater. Rev., 1989, 34(1), 1-18.   DOI
10 X. Lu, Guosheng Li, Jin Y. Kim, John P. Lemmon, Vincent L. Sprenkle, ZhenguoYang, J. Power Sources., 2012, 215, 288-295.   DOI
11 B. M. Ahn, C. W. Ahn, B. D. Hahn, J. J. Choi, Y.D. Kim, S. K. Lim, K. Y. Jung, Y. C. Park, J. H. Choi, Compos. B. Eng., 2019, 168, 442-447.   DOI
12 C. A. Beevers, M. A. S. Ross, Z Kristallogr Cryst Mater., 1937, 97(1-6), 59-66.   DOI
13 A. P. Kroon, G. W. Schaefer, F. Aldinger, Chem. Mater., 1995, 7(5), 878-887.   DOI
14 J.Y. Kim, N.L. Canfield, J.F. Bonnett, V.L. Sprenkle, K. Jung, I. Hong, Solid State Ionics., 2015, 278, 192-197.   DOI
15 L. P. Yang, S. J. Shan, X. L. Wei, X. M. Liu, H. Yang, X. D. Shen, Ceram. Int., 2014, 40(7), 9055-9060.   DOI
16 S. P. Butee, K. R. Kambale, M. Firodiya, Process. Appl. Ceram., 2016, 10(2), 67-72.   DOI
17 H.C. Park, Y.B. Lee, S.G. Lee, C.H. Lee, J.K. Kim, S.S. Park, Ceram. Int., 2005, 31(2), 293-296.   DOI
18 Daniel H. Doughty, Paul C. Butler, Abbas A. Akhil, Nancy H. Clark, John D. Boyes, J. Electrochem Soc Interface., 2010, 19(3), 49-53.
19 S. M. Kim, S. M. Lee, K. Y. Jung, Y. C. Park, N. U. Cho, J. H. Choi, and H. S. Kim, Bull. Korean Chem. Soc., 2015, 36(12), 2869-2874.   DOI
20 H. J. Chang, X. Lu, J. F. Bonnett, N. L. Canfield, S. Son, Y. Park, K. Jung, V. L. Sprenkle, G. Li, J. Power Sources., 2017, 348, 150-157.   DOI
21 K. B. Hueso, M. Armand, T. Rojo, Energy Environ. Sci., 2013, 6(3), 734-749.   DOI
22 Y. Yu Yao, J. T. Kummer, J. Radioanal. Nucl. Chem., 1967, 29(9), 2453-2466.   DOI
23 J.L. Sudworth, J. Power Sources., 1994, 51(1-2), 105-114.   DOI
24 T. Oshima, M. Kajita, A. Okuno, Int. J. Appl. Ceram. Technol., 2004, 1(3), 269-276.   DOI
25 C. W. Ahn, M. Kim, B. D. Hahn, I. C. Hong, W. S. Kim, G. Y. Moon, H. S. Lee, K. Y. Jung, Y. C. Park, J. H. Choi, J. Power Sources., 2016, 329, 50-56.   DOI
26 X. Lu, G. Xia, J. P. Lemmon, Z. Yang, J. Power Sources., 2010, 195(9), 2431-2442.   DOI
27 Y. Goro, S. Kazutaka, Bull. Chem. Soc. Jpn., 1968, 41(1), 93-99.   DOI
28 G. W. Schaefer, H. J. Kim, F. Aldinger, Solid State Ion., 1997, 97(1-4), 285-289.   DOI
29 S. J. Shan, L. P. Yang, X. M. Liu, X. L. Wei, H. Yang, X. D. Shen, J. Alloys Compd., 2013, 563, 176-179.   DOI
30 S. T. Lee, D. H. Lee, S. K. Lim, Materials Science., 2019, 25(3), 328-334.   DOI
31 D. H. Lee, S. T. Lee, J. S. Kim, S. K. Lim, Mater. Res. Bull., 2017, 96, 143-148.   DOI
32 Guosheng Li, X. Lu, Jin Y. Kim, Kerry D. Meinhardt, Hee Jung Chang, Nathan L. Canfield & Vincent L. Sprenkle, Nat. Commun., 2016, 7(1), 1-6.