• Title/Summary/Keyword: Na accumulation

Search Result 337, Processing Time 0.024 seconds

On the Accumulation of Minerals with the Plant Species in a Reclaimed Land (干拓地 植物의 無機營養素 蓄積에 對하여)

  • Min, Byeong Mee
    • The Korean Journal of Ecology
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 1990
  • For reaserching the factors of plants micro-distribution, accumulation of 5 minerals-total-nitrogen, phosphorus, potassium, sodium and calcium-for 19 plant species was investigated in reclaimed land, in western coast of Korea, In the five minerals, sodium contents were quite different among the species. Plant species were divided into 4 groups based on the sodium accumulation and accumulation site in plant tissue: Na accumultion type above-ground part>below-ground part : Triglochin maritimum, Chenopodium virgatum, Atriplex subcordata, Salicornia herbacea, Suaeda japonica, suaeda asparagoides, Limonium tetragonum, Aster tripolium, Artemisia scoparia, Sonchus brachyotus above-ground partbelow-ground part : Zoysia sinica, amagrostis epigeiosa bove-ground part

  • PDF

Effects of NaCl and $Na_2SO_$ on Proline Accumulation and Water Relations through Callus Cultures of Brassica campestris ssp. pekinensis (배추 칼루스 배양시 NaCl 및 $Na_2SO_$가 Proline 축적과 수분관계 에 미치는 영향)

  • 백기엽
    • Journal of Plant Biology
    • /
    • v.34 no.3
    • /
    • pp.185-190
    • /
    • 1991
  • Hypocotyl-derived callus cultures of Brassica pekinensis cv. Chungseng were grown on Murashige-Skoog medium containing NaCl, Na2SO4 and mannitol to clarify the effect of salts on callus growth, proline accumulation and water relations. Na2SO4 was more inhibitory than NaCl when survival rate, growth and fresh:dry weight ratios of established callus were measured. Fresh weight in 0.25% NaCl treatment was more than twice as increasable in comparison to the same concentration of Na2SO4 or control. Proline concentration was increased on either salt, attained at highest levels at the 5th subculture, and fluctuated as affected by both salts or mannitol. Concentrations of redeucing sugars were sharply increased after 2 or 3 times of subculture and decreased by increasing subculture. The water and osmotic potential in callus reached a maximum negative value after two weeks in culture, regardless of salt type and mannitol and tugor remained relatively constant on both salt and mannitol treatments.

  • PDF

Proline Accumulation in Vigna angularis Seedlings Under Salt Stress

  • Lee, Hee-Kyung;Hong, Jung-Hee
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.1
    • /
    • pp.51-57
    • /
    • 2000
  • Changes in the proline accumulation of ten-day-old seedlings of Vigna angularis in response to NaCl treatment were monitored. The proline content increased gradually both with an increase in the exposure time to salt stress and in a concentration-dependent manner. The increased proline accumulation was stronger in the shoots than in the roots. The salt stress by itself resulted in a significant inhibition of the chlorophyll content. Pre-treatment with proline before salinization lasting 48 h did not significantly affect the endogenous proline level in the roots, in contrast, a considerable increase of proline was observed in the shoots. The application of exogenous proline to the seedlings increased the endogenous proline content and improved the root and shoot growth under saline conditions. Detached leaves also exhibited an increased proline level in response to the applied NaCl, however, at a lower magnitude than in the intact seedlings. The proline alleviated the inhibitory effect of the NaCl in a concentration-dependent manner, thereby suggesting that salinity is a strong inducer of proline accumulation. In addition, abscisic acid eliminated the inhibitory effect of the salt salinity, thereby indicating a protective role on salinity stress and a regulatory role in proline synthesis. Accordingly, it would appear that proline may be involved in salt tolerance.

  • PDF

Effects of Salt Stress on Inorganic Ions and Glycine Betaine Contents in Leaves of Beta vulgaris var. cicla L. (염 스트레스가 근대(Beta vulgaris var. cicla L.)의 무기이온 및 glycine betaine 함량에 미치는 영향)

  • Choi, Sung-Chul;Kim, Jong-Guk;Choo, Yeon-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.46 no.3
    • /
    • pp.388-394
    • /
    • 2013
  • Growth, inorganic solutes and glycine betaine accumulation in spinach beet (Beta vulgaris var. cicla L.) were studied under different salt conditions. Plants of fortythree days old were assessed by growing for a further 10 and 20 days at four NaCl concentrations (0, 100, 200, 300 & 400 mM). The dry weight of leaves was maximal in plants which were grown at 100 to 200 mM NaCl treatments and after 10d it was decreased slightly at salt treatments of more than 300 mM NaCl. Under the salt conditions, leaves of B. vulgaris contained high inorganic ions to maintain low water potential, but low water soluble carbohydrate contents. Total ionic content and osmolality increased with increasing salt concentration. Salt stress led to a preferential accumulation of glycine betaine in leaves of B. vulgaris, especially for the 200 mM NaCl treatment. These findings suggest that a high degree of NaCl tolerance of B. vulgaris resulted from the accumulation of glycine betaine, which is known to have osmoprotectant properties in the cytoplasm.

Analysis of metabolites in wheat roots in response to salinity stress

  • Kim, Da-Eun;Roy, Swapan Kumar;Kim, Ki-Hyun;Cho, Seong-Woo;Park, Chul-Soo;Lee, Moon-Soon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.200-200
    • /
    • 2017
  • Salinity stress is one of the most important abiotic stresses and severely impairs plant growth and production. Root is the first site for nutrient accumulation like as $Na^+$ in the plant. To investigate the response of wheat root under salinity stress, we executed the characterization of morphology and analysis of metabolites. Wheat seeds cv. Keumgang (Korean cultivar) were grown on the moist filter paper in Petri dish. After 5 days, seedlings were transferred to hydroponic apparatus at 1500 LUX light intensity, at $20^{\circ}C$ with 70% relative humidity in a growth chamber. Seedlings (5-day-old) were exposed to 50mM, 75mM, 100mM NaCl for 5 days. Ten-day-old seedlings were used for morphological characterization and metabolite analysis. Root and leaf length became shorter in high NaCl concentration compared to following NaCl treatment. For confirmation of salt accumulation, wheat roots were stained with $CoroNa^+$ Green AM, and fluoresce, and the image was taken by confocal microscopy. $Na^+$ ion accumulation rate was higher at 100mM compared to the untreated sample. Furthermore, to analyze metabolites in the wheat root, samples were extracted by $D_2O$ solvent, and extracted sample was analyzed by 1H NMR spectroscopy. Fourteen metabolites were identified in wheat roots using NMR spectroscopy. Methanol and ethanol were up-regulated, whereas formate, aspartate, aminobutyrate, acetate and valine were down-regulated under salinity stress on roots of wheat. Fumarate had no change, while glucose, betaine, choline, glutamate and lactate were unevenly affected during salinity stress.

  • PDF

Salinity Tolerance of Blackgram and Mungbean: I. Dry Matter Accumulation in Different Plant Parts

  • Karim, M.A.;Raptan, P.K.;Hamid, A.;Khaliq, Q.A.;Solaiman, A.R.M.;Ahmed, J.U.
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.380-386
    • /
    • 2001
  • Dry matter(DM) accumulation in different plant parts of two Vigna spp., blackgram(Vigna mungo) and mungbean(Vigna radiata), was compared at different levels of salinity. Two vaarieties of each of blackgram (Barimash-1 and Barimash-2) and mungbean(Barimung-3 and Barimung-4) were grown with 50, 75 and 100mM NaCl solutions and tap water as a control till maturity. The DM accumulation in all plant parts of the two crops devreased with the increasing salinity levels. The reducation was severe in mungbean compared to blackgram. On an average mungbean produced only 3% grain yield compared to 37% in blackgram at 100mM NaCl. The salinity induced growth reduction was relatively less in Barimash-2 than that in Barimash-1. In mungbean, the relative DM production of Barimung-3 was greater than Barimung-4. The extent of biomass reducation due to salinity in different plant parts was not similar. At maturity the rank of biomass accumulation (at 100 mM NaCl) in different plant parts of blackgram was in decreasing order by seeds pod$^{-1}$ (97%), branch plant$^{-1}$ (88%), 1000-grain weight (79%), plant height(72%), pods plant$^{-1}$ (50%), leaf weight and root mass(both 49%) and stem weight (48%). In mungbean, the rank was in decreasing order by 1000-grain weight (57%), leaf weight (54%), plant height (52%), seeds pod$^{-1}$ (50%), branch plant$^{-1}$ (41%), root weight (34%), stem weight (24%) and pods plant$^{-1}$ (6%). Therefore, salinity reduced grain yield more than straw and roots of the Vignaq spp., and blackgram is relatively more salt-tolerant than mungbean.

  • PDF

Role of Intracellular Taurine in Monensin-induced $Na^+,\;Ca^{++}$ Accumulation and Mechanical Dysfunction in Isolated Rat Hearts

  • Kim, Young-Hoon;Park, Jong-Wan;Kim, Myung-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.5
    • /
    • pp.537-546
    • /
    • 1997
  • It has been postulated that the intracellular taurine is co-transported with $Na^+$down a concentration gradient and prevents the intracellular accumulation of sodium. It is therefore, expected that an elevated level of intracellular taurine prevents the sodium-promoted calcium influx to protect the cellular damages associated with sodium and calcium overload. In the present study, we evaluated the effects of intra- and extracellular taurine on the myocardial $Na^+$and$Ca^{++}$ contents and the cardiac functions in isolated rat hearts which were loaded with sodium by monensin, a $Na^+-ionophore$. Monensin caused a dose-dependent increase in intracellular $Na^+$ accompanied with a subsequent increase in intracellular $Ca^{++}$ and a mechanical dysfunction. In this monensin-treated heart, myocardial taurine content was decreased with a concomittent increase in the release of taurine. The monensin-induced increases in intracellular $Na^+$, $Ca^{++}$ and depression of cardiac function were prevented in the hearts of which taurine content had been increased by high-taurine diet. Conversely, in the hearts of which taurine concentration gradient had been decreased by addition of taurine in the perfusate, the monensin-induced increases in $Na^+$, $Ca^{++}$ and functional depression were accelerated. These results suggest that taurine, depending on the intra-extracellular concentration gradient, can affect intracellular sodium and calcium concentrations, and that an increased intracellular taurine may play a role in protection of myocardial dysfunction associated with the sodium and calcium overload.

  • PDF

Growth and substance transfer effect of Pleurotus cornucopiae by low concentration treatments of selenium(I) (저농도 셀레늄 처리가 노랑느타리버섯(Pleurotus cornucopiae) 생육과 물질전이에 미치는 영향(I))

  • Chang, Hyun-You;Chung, Ki-Chul;Jang, In-Ja
    • Journal of Mushroom
    • /
    • v.3 no.2
    • /
    • pp.79-84
    • /
    • 2005
  • The research for incubation period, mycelial density, day required for primordial formation after inoculation(below DPI), number of valid stipes, individual weight and accumulation amounts of organic selenium for P. cornucopiae by treating 100, 200, 300, 400, 500(${\mu}g/50g$) of $Na_2SeO_3$ is following. Incubation periods of P. cornucopiae are 20~23 days per each low concentration treatment with $Na_2SeO_3$. Compared to the control which took 22 days of incubation period, it is reduced 1 or 2 days. Mycelial density of P. cornucopiae treated with $Na_2SeO_3$ between 100 and $500{\mu}g/50g$ is very compact. DPI of P. cornucopiae treated with $Na_2SeO_3$ between 100 and $400{\mu}g/50g$ was reduced 1 or 2days, but $500{\mu}g/50g$ was increased 1 day. Number of valid stipes of P. cornucopiae treated with $Na_2SeO_3$ between 100 and $400{\mu}g/50g$ is between 19 and 20. It was increased 1 or 2, as compared to 18 of control, but $500{\mu}g/50g$ was reduced to 1. Individual weight of P. cornucopiae treated with $Na_2SeO_3$ between 100 and $400{\mu}g/50g$ was between 129 and 138g/850cc. It was increased 4.9~12.2% as compared to 123g/850cc of the control but $500{\mu}g/50g$ was 122g/50g. Accumulation amount of organic selenium for P. cornucopiae treated with $Na_2SeO_3$ between 100 and $500{\mu}g/50g$ was $2.73{\sim}8.19{\mu}g/g/dry$. It was increased 55~164 times as the concentration increased when compared to $0.05{\mu}g/g/dry$ of the control. In conclusion, incubation period, mycelial density, DPI, number of valid stipes, individual weight and accumulation amounts of organic selenium for P. cornucopiae by treating 100, ${\sim}400{\mu}g$ of $Na_2SeO_3$ was increased, but $500{\mu}g/50g$ was reduced. So more than $500{\mu}g/50g$ concentration treatments are required research.

  • PDF

Growth and substance transfer effect of Pleurotus cornucopiae by high concentration treatments of selenium(II) (고농도 셀레늄 처리가 노랑느타리버섯(Pleurotus cornucopiae) 생육과 물질전이에 미치는 영향(II))

  • Chang, Hyun-You;Chung, Ki-Chul;Jang, In-Ja
    • Journal of Mushroom
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2005
  • The research for incubation period, mycelial density, day required for primordial formation after inoculation(below DPI), number of valid stipes, individual weight and accumulation amounts of organic selenium for P. cornucopiae by treating 600, 700, 800, 900, 1000(${\mu}g/50g$) of $Na_2SeO_3$ is following. Incubation periods of P. cornucopiae are 25~30 days per each treatment with $Na_2SeO_3$. Compared to the control which took 22 days of incubation period, it is increased 3 or 8 days for the treatment of $600{\sim}1000{\mu}g/50g$. Mycelial density of P. cornucopiae treated with $Na_2SeO_3$ between 600 and $1000{\mu}g/50g$ is very similar with control. DPI of P. cornucopiae treated with $Na_2SeO_3$ between 600 and $1000{\mu}g/50g$ was increased 3 or 8 days. Number of valid stipes of P. cornucopiae treated with $Na_2SeO_3$ between 600 and $1000{\mu}g/50g$ was between 10 and 16. It was decreased 2 or 8 as compared to 18 of control. Individual weight of P. cornucopiae treated with $Na_2SeO_3$ between 600 and $1000{\mu}g/50g$ was between 94 and 116g/850cc. It was decreased 5.7~23.5% as compared to 123g/850cc of the control. Accumulation amount of organic selenium for P. cornucopiae treated with $Na_2SeO_3$ between 600 and $1000{\mu}g/50g$ was $9.1{\sim}10.8{\mu}g/g/dry$. It was increased 182~216 times as the concentration increased when compared to $0.05{\mu}g/g/dry$ of the control. In conclusion, incubation period, mycelial density, DPI, number of valid stipes, individual weight and accumulation amounts of organic selenium for P. cornucopiae by treating $600{\sim}1000{\mu}g/g$ of $Na_2SeO_3$ was decreased. So that the optimal treatment was less $400{\mu}g/g$ than $600{\sim}1000{\mu}g/g$.

  • PDF

Vanadate-Induced Renal cAMP and Malondialdehyde Accumulation Suppresses Alpha 1 Sodium Potassium Adenosine Triphosphatase Protein Levels

  • Eiam-Ong, Somchit;Nakchui, Yuyen;Chaipipat, Mookda;Eiam-Ong, Somchai
    • Toxicological Research
    • /
    • v.34 no.2
    • /
    • pp.143-150
    • /
    • 2018
  • It has been demonstrated that vanadate causes nephrotoxicity. Vanadate inhibits renal sodium potassium adenosine triphosphatase (Na, K-ATPase) activity and this is more pronounced in injured renal tissues. Cardiac cyclic adenosine monophosphate (cAMP) is enhanced by vanadate, while increased cAMP suppresses Na, K-ATPase action in renal tubular cells. There are no in vivo data collectively demonstrating the effect of vanadate on renal cAMP levels; on the abundance of the alpha 1 isoform (${\alpha}_1$) of the Na, K-ATPase protein or its cellular localization; or on renal tissue injury. In this study, rats received a normal saline solution or vanadate (5 mg/kg BW) by intraperitoneal injection for 10 days. Levels of vanadium, cAMP, and malondialdehyde (MDA), a marker of lipid peroxidation were measured in renal tissues. Protein abundance and the localization of renal ${\alpha}_1-Na$, K-ATPase was determined by Western blot and immunohistochemistry, respectively. Renal tissue injury was examined by histological evaluation and renal function was assessed by blood biochemical parameters. Rats treated with vanadate had markedly increased vanadium levels in their plasma, urine, and renal tissues. Vanadate significantly induced renal cAMP and MDA accumulation, whereas the protein level of ${\alpha}_1-Na$, K-ATPase was suppressed. Vanadate caused renal damage, azotemia, hypokalemia, and hypophosphatemia. Fractional excretions of all studied electrolytes were increased with vanadate administration. These in vivo findings demonstrate that vanadate might suppress renal ${\alpha}_1-Na$, K-ATPase protein functionally by enhancing cAMP and structurally by augmenting lipid peroxidation.