• Title/Summary/Keyword: NY/PP

Search Result 31, Processing Time 0.039 seconds

Evaluation on High-Temperature Mechanical Properties of 150MPa Concrete Mixed with PP and NY Fiber (PP, NY섬유를 혼입한 150MPa 콘크리트의 고온역학적 특성)

  • Baek, Jae-Uk;Kim, Gyu-Yong;Yoon, Min-Ho;Hwang, Eui-Chul;Son, Min-Jae;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.5-6
    • /
    • 2017
  • Ultra high-strength concrete can prevent spalling by mixed ratio of PP and NY fiber. However, there is a lack of research on the deterioration of strength due to changes in mechanical properties after spalling prevention. In this study, the effect of high temperature on the mechanical properties of 150MPa concrete mixed with PP and NY fiber was evaluated. As a result, mixing PP and NY fiber is judge to be little effect on the mechanical properties of the 150MPa concrete at high temperature.

  • PDF

The Quality Characteristics of Brown Stock Prepared by The High Pressure Cooking (가압가열 방식에 의한 Brown Stock의 유통 중 품질 변화)

  • 최수근;최희선
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.13 no.6
    • /
    • pp.615-623
    • /
    • 2003
  • This study has been conducted to develop brown stock with the high pressure cooking(HPC) method. The sterilization methods, package film and storage methods, and quality maintenance during storage were investigated in this study. The packaging quality of NY/PP was inferior to that of PE/AL/PP since NY/PP facilitated the ventilation and moisture absorption. The maximum duration of the safe storage was found to be 50 days at 25$^{\circ}C$, 30 days at 35$^{\circ}C$ for NY/PP package film, and 60 days at 25$^{\circ}C$, 40 days at 35$^{\circ}C$ for PE/AL/PP one. These results showed that the overall quality of brown stock by the HPC method was not different significantly from that of brown stock by the traditional approach. Furthermore, the HPC approach might improve the productivity by saving the labour cost, food cost, and cooking time. Therefore, the traditional method might well be substituted by this newly developed method.

  • PDF

Effect of Fiber Types on Fundamental Properties of Pavement Concrete (섬유 종류가 도로포장용 콘크리트의 기초적 특성에 미치는 영향)

  • Han, Cheon-Goo;Park, Jong-Sup;Jung, Woo-Tai;Jeon, Kyu-Nam
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.4
    • /
    • pp.473-479
    • /
    • 2010
  • The objective of the paper is to experimentally investigate the effect of commercially avaliable fiber types such as polypropylene (PP), nylon (NY), polyvinyl alcohol (PVA) and cellulose (CL) on the engineering properties of concrete for pavement application. The results, showed the fluidity tends to decrease with fibers addition compared to that of plain concrete. As for the effect of fiber types on fluidity loss, use of NY appear to give the most favorable results among all of the fiber types investigated in this study while the effect of the fibers on air content was negligible. For the properties of hardened concrete, compressive and flexural strengths increased with fibers compared to plain concrete. The contribution of NY fibers to strength was the highest followed in the order by NY, PVA, PP, and CL. However, in the case of the splitting tensile strength, its values were increased with NY and PP only. For porosity based on MIP(mercury intrusion penetration) method, the number of around 1 was observed when NY was mixed resulting in increased cumulated amounts of porosity compared with that of plain mix. Thus, based on the consideration of fluidity and strength it was found that the addition of NY fiber showed the optimal results under the conditions applied in this study.

Spalling Properties of 80MPa High Strength Concrete with Fiber (복합섬유(PP,NY)를 혼입한 설계강도 80MPa 3성분계 고강도콘크리트의 폭렬특성)

  • Kim, Seong-Deok;Lee, Bum-Sik;Bae, kee-Sun;Kim, Sang-yun;Park, Su-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.51-54
    • /
    • 2009
  • In this study, the fire resistance test was carried out with a parameter such as fiber(PP+NY) mixed ratio on high strength concrete with 80MPa, and the spalling resistance property was evaluated. Concrete material test was carried out with a parameter such as fiber(PP+NY) mixed ratio(0%, 0.05%, 0.1%, 0.2%) of high strength concrete with 80MPa. Although the flowability and the strength capacity were delicately decreased with a increase of fiber mixed ratio, they satisfied the target limits. As the spalling resistance property after the fire resistance test of 3 hours, the spalling was partly shown on the high strength concrete with fiber(PP+NY) mixed ratio of 0% but, wasn't shown on the high strength concrete with fiber(PP+NY) mixed ratio of 0.05% ~ 0.2%.

  • PDF

Fire Resistance of the High Strength Concrete Depending on Ternary Blended Organic Fiber (3성분계 복합유기섬유 혼입율 변화에 따른 고강도 콘크리트의 내화특성)

  • Park, Chun-Jin;Han, Sang-Yoon;Baek, Dae-Hyun;Han, Min-Cheol;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.397-398
    • /
    • 2010
  • This study analyzed fire resistance characteristics of high strength concrete followd by changes of mixing rate in organic fibers of PP, NY and CL. PP+NY+CL=0.02+0.01+0.02 was better than the mixing of other fibers in fire resistance characteristics.

  • PDF

Fire Resistance of the Concrete Corresponding to the Various Fiber Contents and Heating Curves (섬유의 종류 및 온도가열곡선 변화에 따른 콘크리트의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.101-107
    • /
    • 2008
  • This study investigated fundamental characters of the concrete according to various fiber types and contents and their properties of spatting resistance and residual compressive strength after fire test corresponding to ISO and RABT heating corves. The results were summarized as following. The Flowability was gradually declined as the increase of fiber contents, and it was the most favorable with nylon(NY) fibers. The decrease of air contents due to increasing fiber contents was in order by polypropylene(PP), polyvinyl alcohol(PVA) and NY fibers. The compressive strengths were over 40 MPa at 7 days and 50 MPa at 28 days. It was in order by PVA, PP and NY fibers. For the spatting properties, all specimens were prevented at ISO heating curve. In the other hand, the partial spatting at the surface occurred on the plain without fibers, but it was prevented over 0.10 % of PVA and 0.05 % of PP and NY fibers at the RABT heating curve.

Spalling Properties of 60, 80MPa High Strength Concrete with Fiber (복합섬유(PP, NY)를 혼입한 60, 80MPa 3성분계 고강도콘크리트의 내화특성)

  • Kim, Seong-Deok;Kim, Sang-Yun;Bae, Ki-Sun;Park, Su-Hee;Lee, Bum-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.4
    • /
    • pp.3-9
    • /
    • 2010
  • Fire resistance and material properties of high-strength concrete (W/B 21.5%, 28.5%) with OPC, BS and FA were tested in this study. Main factors of the test consisted of fiber mixing ratio and W/B. Two types of fiber (NY, PP) mixed with the same weight were used for the test. The fiber mixing ratios were 0%, 0.05%, 0.1%, and 0.2% of the concrete weight. After performing the test, Under the W/B level of 21.5% and 28.5%, the spalling was effectively resisted by using the high strength concrete with fiber mixing ratios of 0.05%~0.1%. Compressive strength, flowability and air content are similar those of the fiberless high-strength concrete with the same W/B.

Fundamental Properties and Spalling Resistance of High Strength Concrete Containing Hybrid Organic fiber (복합유기섬유를 사용한 고강도 콘크리트의 기초특성 및 폭렬방지)

  • Pei, Chang-Chun;Han, Dong-Yeop;Lee, Jin-Woo;Han, Chang-Pyung;Yang, Seong-Hwan;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.745-748
    • /
    • 2006
  • This study investigates the fundamental properties and examines spalling appearances and residual compressive strength of high strength concrete containing hybrid organic fibers subjected to fire. Test showed that overall, an increase of fiber content decreased the fluidity of concrete, but specimens containing polyvinyl alcoho(PVA)+polypropylene(PP) fiber and nylon(NY)+PP fiber had improved flow. In addition, the air content of all specimens was properly ranged in target value, regardless of fiber content. As for the spalling properties when completed the fire test, control concrete exhibited spalling occurrence due to sudden elevated temperature. However, specimens containing more than 0.1 vol% of PP fiber prevented the spalling, while specimens containing PP+CL and PVA+PP fiber can protected from fire in more than 0.15vol% of the fiber content. Importantly, a specimen containing only 0.05vol% of NY+PP showed the favorable spalling resistance performance.

  • PDF

Basic Characteristics of High Performance Concrete Mixing Organic Fiber (유기섬유 복합 혼입 고성능 콘크리트의 기초적 특성)

  • Park, Byung-Kwan;You, Ji-Young;Lee, Joung-Ah;Jin, Cheng-Ri;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.87-91
    • /
    • 2008
  • The study examined fire resistance of concrete followed by change of mixed rate in PP and NY composite fiber and the results were as follows. In the event of fluidity in concrete not set, plane satisfied 600±100, its target slump flow, and fluidity was reduced as organic fiber's mixed rate was increased. Air amount satisfied 3.0±1.0, its target air amount, and didn't have distinct differences in reduction and increase according to organic fiber's kind and change of its mixed rate. However, it had a tendency that fluidity was reduced as the mixed rate was increased. In characteristics of hardening concrete, the 28th day compressive strength followed by organic fiber's kind and change of its mixed rate didn't have a lot of differences and satisfied high strength scope as about 70MPa. In spalling characteristics after fire resistance test, spalling was happened in non-mixture, plane combination, and P1N0. In other combinations, spalling resistance was happened. The relic compressive strength rate was 56%, the best condition, in P3N1(PP0.03%, NY0.01% compositeness) mixing PP fiber with NY fiber at once.

  • PDF

Fire Resistant Properties of the RC Columns Applying Various Splling Prevention Methods (폭렬방지공법 변화에 따른 RC 기둥부재의 내화특성)

  • Han, Cheon-Goo;Pei, Chang-Chun;Lee, Jong-Suk;Lee, Chan-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.3 s.55
    • /
    • pp.119-126
    • /
    • 2009
  • This study investigated the fire resistance of RC columns applying Fiber addition method, Fire board attaching method, and Fire proof sparying method. The results were summarized as following. The test showed that increase of fiber content, as expected, decreased the fluidity of fresh concrete, but for the types of fiber, the specimens containing nylon(NY) was favorable. The incline of fiber content also affected on the air content of concrete, which the specimens adding polypropylene(PP) fiber was the lowest, followed by a less decrease in polyvinyl alchhol(PVA) and then NY respectively. For the compressive strength at 28days, it was over 50MPa and showed slight increasing tendency by rising fiber contents. After the fire test completed, control concrete exhibited the severe demage, while the specimens containing more than 0.05vol.% of PP and NY was able to protect from spalling. In the case of splay, the partly spalling occurred at the all finishing material, however the RC columns were protected from spalling. For the methods attached with boards, all RC columns were protected except the dry attaching method. The reduced weight ratio was favorable because it was below 8 % except for plain concrete.