• 제목/요약/키워드: NTA

검색결과 178건 처리시간 0.023초

재조합 GG1234-DsRed 융합 단백질의 생산 및 In vitro 탄산칼슘 결정화에 미치는 영향에 대한 연구 (Production of Recombinant GG1234-DsRed Fusion Protein and Its Effect on in vitro CaCO3 Crystallization)

  • 손채연;김진호;김지하;최유성
    • KSBB Journal
    • /
    • 제30권6호
    • /
    • pp.296-301
    • /
    • 2015
  • Eggshell-based biocomposites have become attractive due to their exquisite nanostructure and biological properties, which are mainly composed of highly organized calcium carbonate crystals controlled by organic macromolecules such as proteins and polysaccharides. Here, we designed the recombinant fusion protein of a putative eggshell matrix protein named as GG1234 and a fluorescent reporter protein of DsRed. The protein was successfully over-expressed in E. coli and purified by Ni-NTA affinity chromatography. In vitro calcium carbonate crystallization was conducted in the presence of the fusion protein, and morphological change was investigated. The protein inhibited the calcite growth in vitro, and spherical calcium carbonate micro-particles with the diameter of about $20-30{\mu}m$ were obtained. We expect that this study would be helpful for better understanding of eggshell-based biomineralization.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Functional Identification of an 8-Oxoguanine Specific Endonuclease from Thermotoga maritima

  • Im, Eun-Kyoung;Hong, Chang-Hyung;Back, Jung-Ho;Han, Ye-Sun;Chung, Ji-Hyung
    • BMB Reports
    • /
    • 제38권6호
    • /
    • pp.676-682
    • /
    • 2005
  • To date, no 8-oxoguanine-specific endonuclease-coding gene has been identified in Thermotoga maritima of the order Thermotogales, although its entire genome has been deciphered. However, the hypothetical protein Tm1821 from T. maritima, has a helix-hairpin-helix motif that is considered to be important for DNA binding and catalytic activity. Here, Tm1821 was overexpressed in Escherichia coli and purified using Ni-NTA affinity chromatography, protease digestion, and gel filtration. Tm1821 protein was found to efficiently cleave an oligonucleotide duplex containing 8-oxoguanine, but Tm1821 had little effect on other substrates containing modified bases. Moreover, Tm1821 strongly preferred DNA duplexes containing an 8-oxoguanine:C pair among oligonucleotide duplexes containing 8-oxoguanine paired with four different bases (A, C, G, or T). Furthermore, Tm1821 showed AP lyase activity and Schiff base formation with 8-oxoguanine in the presence of $NaBH_4$, which suggests that it is a bifunctional DNA glycosylase. Tm1821 protein shares unique conserved amino acids and substrate specificity with an 8-oxoguanine DNA glycosylase from the hyperthermophilic archaeon. Thus, the DNA recognition and catalytic mechanisms of Tm1821 protein are likely to be similar to archaeal repair protein, although T. maritima is an eubacterium.

고대 인도수학의 특징 (The Characteristics of Mathematics in Ancient India)

  • 김종명
    • 한국수학사학회지
    • /
    • 제23권1호
    • /
    • pp.41-52
    • /
    • 2010
  • 고대의 인도수학은 산스크리트어로 쓰여 있고, 수학의 법칙이나 문제들은 구전되었거나 필사본의 형태로 경전 속에 포함되어 있으며, 학생들이 암기를 쉽게 할 수 있도록 아주 간결하게 정리되어 있다. 고대 인도의 많은 수학자들은 일찍이 십진법, 계산법, 방정식, 대수학, 기하학, 삼각법 등의 연구에 공헌하였다. 이 논문은 고대 인도수학과 다른 문명권의 수학발전을 비교하였다. 고대 그리스 수학이 공리적이고 연역적이라면, 인도수학은 양적이며 계산적이지만 원리를 가지고 문제를 해결하는 특성이 있다. 고대 인도와 타 문명권의 수학을 비교하는 것은 오늘날 수학교육과 수학사 연구에 의미가 있는 것으로 사료된다.

Effects of Isocitrate Lyase Inhibitors on Spore Germination and Appressorium Development in Magnaporthe grisea

  • Kim Seung-Young;Park Jin-Soo;Oh Ki-Bong
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권7호
    • /
    • pp.1158-1162
    • /
    • 2006
  • The glyoxylate cycle can conserve carbons and adequately supply tricarboxylic acid (TCA) cycle intermediates for biosynthesis when microorganisms grow on $C_{2}$ carbon sources. It has been reported that isocitrate lyase (ICL1), a key enzyme of the glyoxylate cycle, is highly induced when Magnaporthe grisea, the causal agent of rice blast, infects its host. Therefore, the glyoxylate cycle is considered as a new target for antifungal agents. A 1.6-kb DNA fragment encoding the ICL1 from M. grisea KJ201 was amplified by PCR, cloned into a vector providing His-tag at the N-terminus, expressed in Escherichia coli, and purified using Ni-NTA affinity chromatography. The molecular mass of the purified ICL1 was approximately 60 kDa, as determined by SDS-PAGE. The ICL1 inhibitory effects of TCA cycle intermediates and their analogs were investigated. Among them, 3-nitropropionate was found to be the strongest inhibitor with an $IC_{50}$ value of $11.0{\mu}g/ml$. 3-Nitropropionate inhibited the appressorium development in M. grisea at the ${\mu}M$ level, whereas conidia germination remained unaffected. This compound also inhibited the mycelial growth of the fungus on minimal medium containing acetate as a $C_{2}$ carbon source. These results suggest that ICL1 plays a crucial role in appressorium formation of M. grisea and is a new target for the control of phytopathogenic fungal infection.

Production of (R)-Ethyl-4-Chloro-3-Hydroxybutanoate Using Saccharomyces cerevisiae YOL151W Reductase Immobilized onto Magnetic Microparticles

  • Choo, Jin Woo;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권11호
    • /
    • pp.1810-1818
    • /
    • 2015
  • For the synthesis of various pharmaceuticals, chiral alcohols are useful intermediates. Among them, (R)-ethyl-4-chloro-3-hydroxybutanoate ((R)-ECHB) is an important building block for the synthesis of L-carnitine. (R)-ECHB is produced from ethyl-4-chloro-3-oxobutanoate (ECOB) by a reductase-mediated, enantioselective reduction reaction. The Saccharomyces cerevisiae YOL151W reductase that is expressed in Escherichia coli cells exhibited an enantioselective reduction reaction toward ECOB. By virtue of the C-terminal His-tag, the YOL151W reductase was purified from the cell-free extract using Ni2+-NTA column chromatography and immobilized onto Ni2+-magnetic microparticles. The physical properties of the immobilized reductase (Imm-Red) were measured using electron microscopy, a magnetic property measurement system, and a zeta potential system; the average size of the particles was approximately 1 μm and the saturated magnetic value was 31.76 emu/g. A neodymium magnet was used to recover the immobilized enzyme within 2 min. The Imm-Red showed an optimum temperature at 45℃ and an optimum pH at 6.0. In addition, Bacillus megaterium glucose dehydrogenase (GDH) was produced in the E. coli cells and was used in the coupling reaction to regenerate the NADPH cofactor. The reduction/oxidation coupling reaction composed of the Imm-Red and GDH converted 20 mM ECOB exclusively into (R)-ECHB with an e.e.p value of 98%.

Electroluminescence Properties of Simple Anthracene Derivatives Containing Phenyl or Naphthyl Group at 9,10-position for the Blue OLED

  • Kim, Si Hyun;Lee, Song Eun;Kim, Yong Kwan;Lee, Seung Hee
    • 한국응용과학기술학회지
    • /
    • 제34권3호
    • /
    • pp.562-567
    • /
    • 2017
  • The organic light-emitting diodes are fabricated with six anthracene derivatives containing simple substituents such as phenyl or naphthyl group. The device structure is as in the following: Indium tin oxide (ITO) (180 nm)/4,4-4,4',4"-tris[N-(1-naphthyl)-N-phenylamino]triphenylamine (2-TNATA) (30 nm)/4,4'-bis[N-(1-naphthyl)-N-phenyl-1-amino] biphenyl (NPB) (20 nm)/Emitting compound (30 nm)/2,2',2"-(1,3,5-Benzinetriyl)-tris (1-phenyl-1-H-benz-imidazole) TPBi (40 nm)/lithium quinolate (Liq) (2 nm)/Al (100 nm). In the emitting layer the anthracene derivatives are used without any dopant. All the six devices show blue emissions. Among the tested diodes, the one with 9-(2-naphthyl)-10-(p-tolyl) anthracene (2-NTA) exhibited luminous efficiency, power and external quantum efficiencies of 3.26 cd/A, 0.98 lm/A, 2.8 % at $20mA/cm^2$.

Expression and Receptor Binding Activity of Fusion Protein from Transforming Growth Factor-${/beta}1$ and GFP

  • Yoon, Jun-Ho;Kim, Pyeung-Hyeun;Chun, Gie-Taek;Choi, Eui-Yul;Yie, Se-Won
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권1호
    • /
    • pp.65-70
    • /
    • 2002
  • A TGF-${\beta}1$/GFP monomeric fusion protein was cloned from pPK9A and pGFP-Cl plasmid by PCR amplification. The fusion protein was expressed in a $Bac-To-Bac^{TM}$ baculovirus expression system. A 45 kDa fusion protein was purified using an Ni-NTA column with 300 mM imidazol from a cell lysate infected with recombinant viruses for 72 h post-infection. The fusion protein cross-reacted with the commercial $TGF-{\beta}1$ polyclonal Ab as well as Ab raised against a precursor, monomeric $TGF-{\beta}1$, and GFP. The binding activity of the fusion protein with a $TGF-{\beta}1$ receptor was examined. Fluorescence was observed in Mv1Lu cells, yet not in insect cells treated with the fusion protein. No fluorescence was detected in Mv1Lu cells incubated with the fusion protein treated with Ab prior to the binding reaction, or with GFP alone, thereby indicating that the binding of the fusion protein was specific to $TGF-{\beta}1$ with a receptor.

Expression and In Vitro Activity of Recombinant Canstatin in Stably Transformed Bombyx mori Cells

  • Lee, Ji-Hye;Lee, Jong-Min;Jeon, Hwang-Bo;Shon, Bong-Hee;Yang, Jai-Myung;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.685-689
    • /
    • 2009
  • We describe the expression of recombinant canstatin from stably transformed Bombyx mori BmS (BmS) cells. Recombinant canstatin was secreted into a culture medium with a molecular mass of approximately 29 kDa. Densitometric scanning showed that the secreted canstatin accounted for approximately 91% of the total canstatin production. Recombinant canstatin was also purified to homogeneity using a simple one-step Ni-NTA affinity fractionation. The identity of the purified protein was confirmed as human canstatin by nano-LC-MS/MS analysis. Purified recombinant canstatin inhibited human endothelial cell proliferation in a dose-dependent manner. The concentration at half-maximum inhibition ($ED_{50}$) for recombinant canstatin expressed in stably transformed BmS cells was approximately 0.64 ${\mu}g/ml$. A maximum production level of 11 mg/l recombinant canstatin was obtained in a T-flask culture of BmS cells after 6 days of incubation.

Enantioselective Bioconversion Using Escherichia coli Cells Expressing Saccharomyces cerevisiae Reductase and Bacillus subtilis Glucose Dehydrogenase

  • Park, Hyun-Joo;Jung, Ji-Hye;Choi, Hye-Jeong;Uhm, Ki-Nam;Kim, Hyung-Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권9호
    • /
    • pp.1300-1306
    • /
    • 2010
  • Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni-NTA and desalting column chromatography. It evidenced an optimum temperature of $45^{\circ}C$ and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.