Browse > Article
http://dx.doi.org/10.4014/jmb.1003.03025

Enantioselective Bioconversion Using Escherichia coli Cells Expressing Saccharomyces cerevisiae Reductase and Bacillus subtilis Glucose Dehydrogenase  

Park, Hyun-Joo (Division of Biotechnology, The Catholic University of Korea)
Jung, Ji-Hye (Division of Biotechnology, The Catholic University of Korea)
Choi, Hye-Jeong (Division of Biotechnology, The Catholic University of Korea)
Uhm, Ki-Nam (Cronbio Com.)
Kim, Hyung-Kwoun (Division of Biotechnology, The Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.9, 2010 , pp. 1300-1306 More about this Journal
Abstract
Ethyl (R, S)-4-chloro-3-hydroxybutanoate (ECHB) is a useful chiral building block for the synthesis of L-carnitine and hypercholesterolemia drugs. The yeast reductase, YOL151W (GenBank locus tag), exhibits an enantioselective reduction activity, converting ethyl-4-chlorooxobutanoate (ECOB) exclusively into (R)-ECHB. YOL151W was generated in Escherichia coli cells and purified via Ni-NTA and desalting column chromatography. It evidenced an optimum temperature of $45^{\circ}C$ and an optimum pH of 6.5-7.5. Bacillus subtilis glucose dehydrogenase (GDH) was also expressed in Escherichia coli, and was used for the recycling of NADPH, required for the reduction reaction. Thereafter, Escherichia coli cells co-expressing YOL151W and GDH were constructed. After permeablization treatment, the Escherichia coli whole cells were utilized for ECHB synthesis. Through the use of this system, the 30 mM ECOB substrate could be converted to (R)-ECHB.
Keywords
Reductase; whole-cell bioconversion; chiral intermediate; enantioselectivity; coupling reaction;
Citations & Related Records

Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Groeger, H., W. Hummel, C. Rollmann, F. Chamouleau, H. Husken, H. Werner, et al. 2004. Preparative asymmetric reduction of ketones in a biphasic medium with an (S)-alcohol dehydrogenase under in situ-cofactor-recycling with a formate dehydrogenase. Tetrahedron 60: 633-640.   DOI   ScienceOn
2 Groeger, H., C. Rollmann, F. Chamouleau, I. Sebastien, O. May, W. Wienand, and K. Drauz. 2007. Enantioselective reduction of 4-fluoroacetophenone at high substrate concentration using a tailor-made recombinant whole cell catalyst. Adv. Synth. Catal. 349: 709-712.   DOI   ScienceOn
3 Choi, Y. H., H. J. Choi, D. Kim, K. N. Uhm, and H. K. Kim. 2010. Asymmetric synthesis of (S)-3-chloro-1-phenyl-1-propanol using Saccharomyces cerevisiae reductase with high enantioselectivity. Appl. Microbiol. Biotechnol. 87: 185-193.   DOI   ScienceOn
4 Ema, T., H. Yagasaki, N. Okita, M. Takeda, and T. Sakai. 2006. Asymmetic reduction of ketones using recombinant E. coli cells that produce a versatile carbonyl reductase with high enantioselectivity and broad substrate specificity. Tetrahedron 62: 6143-6149.   DOI   ScienceOn
5 Zhang, W., K. O'Conner, D. I. C. Wang, and Z. Li. 2009. Bioreduction with efficient recycling of NADPH by coupled permeabilized microorganisms. Appl. Environ. Microbiol. 75: 687-694.   DOI   ScienceOn
6 Shorrock, V. J., M. Chartrain, and J. M. Woodley. 2004. An alternative bioreactor concept for application of an isolated oxidoreductase for asymmetric ketone reduction. Tetrahedron 60: 781-788.   DOI   ScienceOn
7 Wong, C. H., D. G. Drueckhammer, and H. M. Sweers. 1985. Enzymatic vs. fermentative synthesis: Thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis. J. Am. Chem. Soc. 107: 4028-4031.   DOI   ScienceOn
8 Wong, C. H. and G. M. Whitesides. 1981. Enzyme-catalyzed organic synthesis: NAD(P)H cofactor regeneration by using glucose-6-phosphate and the glucose-5-phosphate dehydrogenase from Leuconostoc mesenteroides. J. Am. Chem. Soc. 103: 4890-4899.   DOI
9 Stampfer, W., K. Edegger, B. Kosjek, K. Faber, and W. Kroutil. 2004. Simple biocatalytic access to enantiopure (S)-1-heteroarylethanols employing a microbial hydrogen transfer reaction. Adv. Synth. Catal. 346: 57-62.   DOI   ScienceOn
10 Schroer, K., U. Mackfeld, I. A. W. Tan, C. Wandrey, F. Heuser, S. Bringer-Mayer, et al. 2007. Continuous asymmetric ketone reduction processes with recombinant Escherichia coli. J. Biotechnol. 132: 438-444.   DOI   ScienceOn
11 Kizaki, N., Y. Yasohara, J. Hasegawa, M. Wada, M. Kataoka, and S. Shimizu. 2001. Synthesis of optically pure ethyl (S)-4-chloro-3-hydroxybutanoate by Escherichia coli transformant cells coexpressing the carbonyl reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 55: 590-595.   DOI   ScienceOn
12 Eckstein, M., M. V. Filho, A. Liese, and U. Kragl. 2004. Use of an ionic liquid in a two-phase system to improve an alcohol dehydrogenase catalysed reduction. Chem. Commun. 2004: 1084-1085.
13 Ni, Y. and R. R. Chen. 2004. Accelerating whole-cell biocatalysis by reducing outer membrane permeability barrier. Biotechnol. Bioeng. 87: 804-811.   DOI   ScienceOn
14 Kataoka, M., K. Yamamoto, H. Kawabata, M. Wada, K. Kita, H. Yanase, and S. Shimizu. 1999. Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by Escherichia coli transformant cells coexpressing the aldehyde reductase and glucose dehydrogenase genes. Appl. Microbiol. Biotechnol. 51: 486-490.   DOI   ScienceOn
15 Kataoka, M., K. Kita, M. Wada, Y. Yasohara, J. Hasegawa, and S. Shimizu. 2003. Novel bioreduction system for the production of chiral alcohols. Appl. Microbiol. Biotechnol. 62: 437-445.   DOI   ScienceOn
16 Johannes, T. W., R. D. Woodyer, and H. Zhao. 2007. Efficient regeneration of NADPH using an engineered phosphate dehydrogenase. Biotechnol. Bioeng. 96: 18-26.   DOI   ScienceOn
17 Kaluzna, I. A., T. Matsuda, A. K. Sewell, and J. D. Stewart. 2004. Systematic investigation of Saccharomyces cerevisiae enzymes catalyzing carbonyl reductions. J. Am. Chem. Soc. 126: 12827-12832.   DOI   ScienceOn
18 Hummel, W., K. Abokitse, K. Drauz, C. Rollmann, and H. Groeger. 2003. Towards a large-scale asymmetric reduction process with isolated enzymes: Expression of an (S)-alcohol dehydrogenase in E. coli and studies on the synthetic potential of this biocatalyst. Adv. Synth. Catal. 345: 153-159.   DOI   ScienceOn
19 Goldberg, K., K. Schroer, S. Lutz, and A. Liese. 2007. Biocatalytic ketone reduction - a powerful tool for the production of chiral alcohols - part I: Processes with isolated enzymes. Appl. Microbiol. Biotechnol. 76: 237-348.   DOI   ScienceOn
20 De Smet, M. J., J. Kingma, and B. Witholt. 1978. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochim. Biophys. Acta 506: 64-80.   DOI   ScienceOn
21 Denyer, S. P. and J.-Y. Maillard. 2002. Cellular impermeability and uptake of biocides and antibiotics in Gram-negative bacteria. J. Appl. Microbiol. Symp. Suppl. 92: 35S-45S.   DOI   ScienceOn
22 Canovas, M., T. Torroglosa, and J. L. Iborra. 2005. Permeabilization of Escherichia coli cells in the biotransformation of trimethylammonium compounds into L-carnitine. Enzyme Microb. Technol. 25: 300-308.
23 Chang, D., J. Zhang, B. Witholt, and Z. Li. 2004. Chemical and enzymatic synthetic methods for asymmetric oxidation of the C-C double bond. Biocatal. Biotransform. 22: 113-131.   DOI   ScienceOn