Browse > Article
http://dx.doi.org/10.7841/ksbbj.2015.30.6.296

Production of Recombinant GG1234-DsRed Fusion Protein and Its Effect on in vitro CaCO3 Crystallization  

Son, Chaeyeon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Jin Ho (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Kim, Ji Ha (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Choi, Yoo Seong (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
KSBB Journal / v.30, no.6, 2015 , pp. 296-301 More about this Journal
Abstract
Eggshell-based biocomposites have become attractive due to their exquisite nanostructure and biological properties, which are mainly composed of highly organized calcium carbonate crystals controlled by organic macromolecules such as proteins and polysaccharides. Here, we designed the recombinant fusion protein of a putative eggshell matrix protein named as GG1234 and a fluorescent reporter protein of DsRed. The protein was successfully over-expressed in E. coli and purified by Ni-NTA affinity chromatography. In vitro calcium carbonate crystallization was conducted in the presence of the fusion protein, and morphological change was investigated. The protein inhibited the calcite growth in vitro, and spherical calcium carbonate micro-particles with the diameter of about $20-30{\mu}m$ were obtained. We expect that this study would be helpful for better understanding of eggshell-based biomineralization.
Keywords
Biomineralization; Calcium carbonate; Recombinant protein; Fusion protein;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Marin, F., G. Luquet, B. Marie, and D. Medakovic (2008) Molluscan shell proteins: primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80: 209-276.
2 Rose, M. L. H. and M. T. Hincke (2009) Protein constituents of the eggshell: Eggshell-specific matrix proteins. Cell. Mol. Life Sci. 66: 2707-2719.   DOI
3 Miyamoto, H., H. Endo, N. Hashimoto, K. Iimura, Y. Isowa, S. Kinoshita, T. Kotaki, T. Masaoka, T. Miki, S. Nakayama, C. Nogawa, A. Notazawa, F. Ohmori, I. Sarashina, M. Suzuki, R. Takagi, J. Takahashi, T. Takeuchi, N. Yokoo, N. Satoh, H. Toyohara, T. Miyashita, H. Wada, T. Samata, K. Endo, H. Nagasawa, S. Asakawa, and S. Watabe (2013) The diversity of shell matrix proteins: Genome-wide investigation of the pearl oyster, Pinctada fucata. Zool. Sci. 30: 801-816.   DOI
4 Mann, K., B. Macek, and J. V. Olsen (2006) Proteomic analysis of the acid-soluble organic matrix of the chicken calcified eggshell layer. Proteomics 6: 3801-3810.   DOI
5 Evans, J. S. (2012) Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics 28: 3182-3185.   DOI
6 Picker, A., M. Kellermeier, J. Seto, D. Gebauer, and H. Colfen (2012) The multiple effects of amino acids on the early stages of calcium carbonate crystallization. Z. Kristallogr. 227: 744-757.
7 Magdalena, W., P. Dobryszycki, and A. Ozyhar (2012) Intrinsically disordered proteins in biomineralization. pp 3-32. In: J. Seto (ed.), Advanced Topics in Biominerlization. InTech.
8 Sun, J. and B. Bhushan (2012) Hierarchical structure and mechanical properties of nacre: A review. RSC adv. 2: 7617-7632.   DOI
9 Suzuki, M., K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura, T. Kato, and H. Nagasawa (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325: 1388- 1390.   DOI
10 Addadi, L., D. Joester, F. Nudelman, and S. Weiner (2006) Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chem. 12: 980-987.   DOI
11 Briegel, C. and J. Seto (2012) Single amino acids as additives modulating $CaCO_3$ mineralization. pp 33-48. In: J. Seto (ed.), Advanced Topics in Biominerlization. InTech.
12 Nys, Y., J. Gautron, J. M. Garcia-Ruiz, and M. T. Hincke (2004) Avian eggshell mineralization: biochemical and functional charac-terization of matrix proteins. Cr. Palevol. 3: 549-562.   DOI
13 Addadi, L. and S. Weiner (1992) Control and design principles in biological mineralization. Angew. Chem. Int. Ed. 31: 153-169.   DOI
14 Cordeiro, C. M. and M. T. Hincke (2011) Recent patents on eggshell: shell and membrane applications. Recent Pat. Food Nutr. Agric. 3: 1-8.   DOI
15 Son, C. S. Y. Bahn, H. J. Cha, and Y. S. Choi (2015) Calcium binding proteins and coacervate formed from calcium binding proteins. Korea patent 10-2015-0064348.
16 Chien, Y. C., M. T. Hincke, and M. D. McKee (2009) Avian eggshell structure and osteopontin. Cells Tissues Organs 189: 38-43.   DOI
17 Wang, X., R. Kong, X. Pan, H. Xu, D. Xia, H. Shan, and J. R. Lu (2009) Role of ovalbumin in the stabilization of metastable vaterite in calcium carbonate biomineralization. J. Phys. Chem. B 113: 8975-8982.   DOI
18 Wang, X., H. Sun, Y. Xia, C. Chen, H. Xu, H. Shan, and J. R. Lu (2009) Lysozyme mediated calcium carbonate mineralization. J. Colloid Interface Sci. 332: 96-103.   DOI
19 Bahn, S. Y., B. H. Jo, B. H. Hwang, Y. S. Choi, and H. J. Cha (2015) Role of Pif97 in nacre biomineralization: In vitro characterization of recombinant Pif97 as a framework protein for the association of organic-inorganic layers in nacre. Cryst. Growth Des. 15: 3666-3673.   DOI
20 Marin, F., G. Luquet, B. Marie, and D. Medakovic (2008) Molluscan shell proteins: Primary structure, origin, and evolution. Curr. Top. Dev. Biol. 80: 209-276.
21 Addadi, L., S. Raz, and S. Weiner (2003) Taking advantage of disorder: amorphous calcium carbonate and its roles in biomineralization. Adv. Mater. 15: 959-970.   DOI