• Title/Summary/Keyword: NT blastocyst

Search Result 76, Processing Time 0.024 seconds

Production of Bovine Nuclear Transfer Embryos Using Fibroblasts Transfected with Single-Chain Human Follicle-Stimulating Hormone Gene

  • Yoon, Ji Young;Kwon, Mo Sun;Kang, Jee Hyun;Ahn, Kwang Sung;Kim, So Seob;Kim, Nam-Hyung;Kim, Jin-Hoi;Kim, Teoan;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.2
    • /
    • pp.168-173
    • /
    • 2009
  • Human follicle-stimulating hormone (hFSH) is a pituitary glycoprotein that regulates follicular development and ovulation. Clinically, hFSH has been used to induce follicular growth in infertile women. The hormone is composed of heterodimers, including a common ${\alpha}$ subunit among the gonadotropin family and a hormone-specific ${\beta}$ subunit. Since assembly of the heterodimer is a rate-limiting step in the production of functional hFSH, transgenic clone cows carrying a single-chain hFSH transgene may efficiently produce functional hormone. Genes encoding the ${\alpha}$ and ${\beta}$ subunits of hFSH were linked using the C-terminal peptide sequence from the ${\beta}$ subunit of human chorionic gonadotropin. Bovine fetal fibroblasts were transfected with the gene construct, including the goat ${\beta}$-casein promoter and a single-chain hFSH coding sequence. Transfected fibroblasts were transferred into enucleated oocytes, and individual nuclear transfer (NT) embryos developed to the blastocyst stage were analyzed for the transgene by polymerase chain reaction. Seventy eight blastocysts (30.8%) were developed from 259 reconstructed embryos. Among these blastocysts, the hFSH gene was detected in 70.8% (34/48) of the embryos. Subsequent transfer of hFSH-transgenic clone embryos to 31 recipients results in 11 (35.5%) early pregnancies. However, all fetuses were lost before reaching day 180 of gestation. The results from this study demonstrated that bovine NT embryos carrying single-chain hFSH could be produced, and further extensive studies in which NT embryos are transferred to more recipients may give rise to single chain hFSH-transgenic cows for biomedical applications.

Correlation of Oct4 and FGF4 Gene Expression on Peri-implantation Bovine Embryos Reconstructed with Somatic Cell

  • K. S. Chung;Yoon, B. S;S. J. Song;Park, Y. J.;S. B. Hong;Lee, H. T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.329-338
    • /
    • 2002
  • This study was carried out to investigate the developmental rates of embryo reconstructed with different cell type and to estimate correlation of transcriptional level of octamer-binding transcription factor 4 (Oct4) and fibroblast growth factor 4 (FCF4) gene on peri-implantation stage embryos. Donor cells were transferred into perivitelline space of enucleated oocytes. The karyoplast-cytoplast couplets were accom- plished by cell to cell fusion and activated with ionomycin and 6-dimethylaminopurine. Reconstructed embryos were co-cultured with bovine oviduct epithelial cells in CR 1 aa medium. There is no difference in blastocyst formation rate following nuclear transfer UT) with fetal fibroblast cell (16/50; 32.0%), cumulus cell (16/49; 32.6%) and ear cell (17/52; 32.6%). The expression level of Oct4 and FCF4 in peri-implantation bovine embryo derived from in vitro fertilization (IVF) and NT were determined by reverse-transcription polymerase chain reaction (RT-PCR) technique. In peri-implantation of IVF result in a transient increased of FCF4 paralleled by an increased expression of Oct4. However, Oct4 gene was highly expressed in hatching blastocysts derived from NT compared to IVF. Also, FGF4 expression level in hatching blastocysts and outgrowth stage derived from NT was lower than that of IVF. In conclusion, it is suggested that the different transcription patterns observed in nuclear transfer embryos may lead to a lower rate of embryo development, implantation and pregnancy.

Expression and Localization of Heat Shock Protein 70 in Frozen-thawed IVF and Nuclear Transferred Bovine Embryos

  • Chung, K.S.;Choi, Y.J.;Song, S.J.;Do, J.T.;Yoon, B.S.;Kim, Y.J.;Lee, H.T.
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.4
    • /
    • pp.311-320
    • /
    • 2002
  • The objective of this study was to assess the developmental potential in vitro produced embryos frozen-thawed with the various containers, and also examined expression and localization of heat shock protein 70 at these embryos. For the vitrification, 2-cell, 8-cell and blastocyst stage embryos produced by in vitro fertilization (IVF) and nuclear transfer (NT) were exposed the ethylene glycol 5.5 M freezing solution (EC 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop, and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min. and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid and cryo-loop. However, survival rates by straw were relatively lower than other containers. The use of cryo-loop resulted in only survival of nuclear transferred embryos (43.7%). Also, there embryos after IVF or NT were analysed by semi-quantitive reverse transcription-polymerase chain reaction (RT- PCR) methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNh were higher thawed embryos than control embryos. Immunocytochemistry used to localize the hsp 70 protein in embryos. Two and 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some frozen-thawed embryos. However, in the control, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform In distribution. Therefore, this result suggests that the exploiting Hsp 70 in the early embryos may be role for protection of stress condition for increase viability of embryos within IVF, NT and there frozen-thawed embryos.

Effect of Defined KSOM Medium on the Development of 1-antitrypsin Transgenic Nuclear Transfer Bovine Embryos

  • M.M.U. Bhuiyan;J.K. Cho;G. Jang;Park, E.S.;S.K. Kang;Lee, B.C.;W.S. Hwang
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.74-74
    • /
    • 2002
  • Production of u 1-antitrypsin ($\alpha$AT) in transgenic cows has a great value in the field of medicine. The present study was conducted to determine the effect of chemically defined KSOM media on in vitro development of bovine transgenic nuclear transfer (NT) embryos. An expression plasmid for human $\alpha$AT was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human $\alpha$AT target gene into a pcDNA3 plasmid. Cumulus cells as donor nuclei in NT were collected from a Holstein cow and transfected by lipid-mediated method using FuGene6 (Roche Molecular Biochemicals, USA) as reagent. GFP expressed cumulus cells were introduced into recipient oocytes under DIC microscopy equipped with FITC filter set. After electrical fusion and chemical activation, reconstructed embryos were cultured in 1) SOF + 0.8% BSA, 2) KSOM + 0.8% BSA, 3) KSOM + 10% FBS and 4) KSOM +0.01% PVA for 192 h at 39$^{\circ}C$ with 5% $CO_2$, 5% $O_2$ and 90% $N_2$in humidified condition. The development of the embryos was recorded and the GFP expression in blastocyst was determined under FITC filter. The average fusion rate was 73.8% (251/340; n=8). The development rates to 2-4 cells, morula, blastocysts and expression rates in blastocysts varied from 70.3 to 76.5%, 30.2 to 33.8%, 25.4 to 33.8% and 11.8 to 15.6%, respectively. The difference in development and expression rates of embryos among 4 culture groups was not significant (P>0.05). This study indicates that chemically defined KSOM medium is also able to support development of bovine transgenic NT embryos at similar rate of SOF or KSOM supplemented with BSA or serum.

  • PDF

In Vitro Development of Bovine Nuclear Transfer Embryos Reconstructed with Fetal Fibroblasts (태아 섬유아세포로 재구성된 핵치환 소 수정란의 체외발달)

  • Koo, D.B.;Choi, Y.H.;Park, J.S.;Kim, H.N.;Kang, Y.K.;Lee, C.S.;Han, Y.M.;Park, H.D.;Lee, K.K.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.407-417
    • /
    • 2000
  • The present study was to examine effects of various electrical stimulus treatments used for electro-fusion on the preimplantation development of bovine nuclear transfer (NT) embryos with fetal fibroblast cells. Fetal fibroblast cells were isolated from one fetus at day 45 of gestation in Holstein cow, and passaged 3 to 4 times before being transferred into enucleated oocytes. Single fibroblast cells were individually placed into the perivitelline space of enucleated oocytes by using a micromanipulator. At first, the fusion and developmental rates of reconstructed oocytes were compared between different electric stimulation conditions. When fusion of the reconstructed oocyte was induced by different electric pulse periods (15, 30 and 45 $\mu$sec) at a DC pulse of 1.8 kV/cm, 15 (45.5%, 120/264) or 30 $\mu$ sec group (43.9%, 106/241) showed a higher fusion rate than 45 $\mu$sec group (23.2%, 58/250, P<0.05). However, no difference was detected in the development rate of the fused oocytes to blastocysts between groups. Next experiment was to examine the effects of different electrical field strengths (1.5, 1.8 and 2.1 kV/cm) for 15 $\mu$sec at electrofusion on in vitro development of the NT embryos. As results, there was no difference in the fusion and developmental rates of the NT embryos between electrical strength (P>0.05). Finally, developmental competence of bovine NT embryos with somatic cells was compared with IVF-derived embryos. Of enucleated oocytes fused with fibroblast cells, 27.4% (75/274) developed to the blastocyst stage, which is similar to that (24.5%, 58/237) of IVF-derived embryos. However, mean nuclei number of NT blastocysts was smaller than that of IVF-derived blastocysts. Thus, we have established an optimal condition (1.8 kV/cm, 15 $\mu$sec) for electric fusion of bovine NT oocytes with somatic cells. The present study indicates that bovine reconstructed embryos with somatic cells normally develop to blastocyst stage in vitro, although having smaller nuclei numbers of blastocysts as compared to IVF-derived embryos.

  • PDF

Effects of Activation Regimens of Recipient Cytoplasm, Culture Condition of Donor Embryos and Size of Blastomeres on Development of Reconstituted Bovine Embryos (수핵 난자의 활성화 방법과 공핵 수정란의 배양체계 및 할구의 크기가 소 핵이식 수정란의 발달에 미치는 영향)

  • 심보웅;조성근;이효종;박충생;최상용
    • Korean Journal of Animal Reproduction
    • /
    • v.22 no.4
    • /
    • pp.425-435
    • /
    • 1998
  • To improve the efficiency of nuclear transplantation in bovine, in this study the development in vitro of nuclear transferred (NT) embryos was compared by different activation regimens of the enucleated oocytes. The effect of developmental stage and culture system of donor nuclei on fusion and development in vitro of NT embryos were also evaluated. Oocytes were collected from Hanwoo ovaries obtained from slaughterhouse and matured in Ham's F-10 supplemented with hormones. After 20~22 h maturation, the oocytes were vortexed to be free from cumulus cells and subsequently their nucleus and the first polar body were removed. Enucleated oocytes were divided into 3 groups for activation; the oocytes of group I were activated with ionomycin for 5 min and subsequently incubated in 6-dimetylarninopurine (DMAP) for 4 h, Those of group II were treated with DMAP for 4 h at 39 h after onset of in vitro maturation (IVM) and those of group III were kept in room temperature ($25^{\circ}C$) for 3 h at 39 h after onset of IVM. After in vitro fertilization (IVF) the embryos for muclear donor were cultured either by group culture (20 embryos /50 ${mu}ell$ drop) or individually (1 embryo /50 ${mu}ell$ drop) for 4 day and 5 day. At day 4 and 5 after IVF, blastomeres were separated in calcium-magnesium free medium, and then classified into small (day 5: $\leq$ 38 ${\mu}{\textrm}{m}$, day 4: $\leq$ 46 ${\mu}{\textrm}{m}$) and large (day 5 : $\geq$ 38 ${\mu}{\textrm}{m}$, day 4 ; $\geq$ 46 ${\mu}{\textrm}{m}$). The separated blastomeres were replaced into enucleated and activated recipient cytoplasm. The blastomere-oocyte complexes were fused by electrically. The NT embryos were cultured in TCM-199 containing 10% FCS in 39$^{\circ}C$, 5% $CO_2$ incubator for 7 day. The results obtained were summarized as follows; There were no differences in fusion and development to blastocyst between groups as group I (68%, 10%), group II (75%, 14%) and group III (73%, 9%), respectively. However, the cell number in blastocyst of NT embryos in group III were significantly fewer than in the other groups (P<0.05). No differences in fusion and development to blastocyst were found between individual or group cultured and between small or large blastomeres of day 4 and day 5 donor embryos. From these results, it was concluded that the combination of ionomycin and DMAP, or treatment of DMAP at 39 h after onset of IVM were useful for the efficient of production of NT bovine embryos, and the individual cultured embryos could be simply used as donor nuclei for NT bovine embryo.

  • PDF

Effects of Recipient Oocytes and Electric Stimulation Condition on In Vitro Development of Cloned Embryos after Interspecies Nuclear Transfer with Caprine Somatic Cell (수핵난자와 전기적 융합조건이 산양의 이종간 복제수정란의 체외발달에 미치는 영향)

  • 이명열;박희성
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.21-27
    • /
    • 2004
  • This study was conducted to investigate the developmental ability of caprine embryos after somatic cell interspecies nuclear transfer. Recipient bovine and porcine oocytes were obtained from slaughterhouse and were matured in vitro according to established protocols. Donor cells were obtained from an ear-skin biopsy of a caprine, digested with 0.25% trypsin-EDTA in PBS and primary fibroblast cultures were established in TCM-199 with 10% FBS. The matured oocytes were dipped in D-PBS plus 10% FBS + 7.5 $\mu$ g/ml cytochalasin B and 0.05M sucrose. Enucleation were accomplished by aspirating the first polar body and partial cytoplasm which containing metaphase II chromosomes using a micropipette with an out diameter of 20∼30 $\mu$m. A Single donor cell was individually transferred into the perivitelline space of each enucleated oocyte. The reconstructed oocytes were electric fusion with 0.3M mannitol fusion medium. After the electrofusion, embryos were activated by electric stimulation. Interspecies nuclear transfer embryos with bovine cytoplasts were cultured in TCM-199 medium supplemented with 10% FBS including bovine oviduct epithelial cells for 7∼9 day. And porcine cytoplasts were cultured in NCSU-23 medium supplemented with 10% FBS for 6 ∼8 day at $39^{\circ}C, 5% CO_2 $in air. Interspecies nuclear transfer by recipient bovine oocytes were fused with electric length 1.95 kv/cm and 2.10 kv/cm. There was no significant difference between two electric length in fusion rate(47.7 and 44.6%) and in cleavage rate(41.9 and 54.5%). Using electric length 1.95 kv/cm and 2.10 kv/cm in caprine-porcine NT oocytes, there was also no significant difference between two treatments in fusion rate(51.3 and 46.1%) and in cleavage rate(75.0 and 84.9%). The caprine-bovine NT oocytes fusion rate was lower(P<0.05) in 1 pulse for 60 $\mu$sec(19.3%), than those from 1 pulse for 30 $\mu$sec(50.8%) and 2 pulse for 30 $\mu$sec(31.0%). The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(53.3%) and 2 pulse for 30 $\mu$sec(50.0%), than in 1 pulse for 60 $\mu$sec(18.2%). The caprine-porcine NT oocytes fusion rate was 48.1% in 1 pulse for 30 $\mu$sec, 45.2% in 2 pulse for 30 $\mu$sec and 48.6% in 1 pulse for 60 $\mu$sec. The cleavage rate was higher(P<0.05) in 1 pulse for 30 $\mu$sec(78.4%) and 1 pulse for 60 $\mu$sec(79.4%), than in 2 pulse for 30 $\mu$sec(53.6%). In caprine-bovine NT embryos, the developmental rate of morula and blastocyst stage embryos were 22.6% in interspecies nuclear transfer and 30.6% in parthenotes, which was no significant differed. The developmental rate of morula and blastocyst stage embryos with caprine-porcine NT embryos were lower(P<0.05) in interspecies nuclear transfer(5.1%) than parthenotes(37.4%).

Effects of Different Blastocyst Production Techniques: In Vivo, In Vitro or Nuclear Transfer, on Pregnancy, Parturition and Viability of Hanwoo (한우 체내, 체외 및 복제 수정란이 이식된 수란우의 임신과 분만 및 산자의 생존)

  • Park Y. S.
    • Journal of Embryo Transfer
    • /
    • v.19 no.3
    • /
    • pp.239-244
    • /
    • 2004
  • The present study was to investigate the pregnancy rate, gestation length and abortion rate of the recipients which transferred blastocysts produced by in-vivo collection, in-vitro fertilization (IVF) and nuclear transfer (NT). In addition, we investigate the birth weight and survival rate of the calves derived from the same methods. The pregnancy rate was 56.3% in-vivo blastocysts, significantly higher than 19.4% in NT blastocysts (p<0.05) but not significantly different from 30.0% in IVF blastocysts. The abortion rate and the gestation length did not differ among the treatment groups (abortion rate: 0, 22.2 and 16.7% respectively; gestation length: 278.8, 289.4 and 281.4 days respectively). The mean birth weight was significantly higher in NT calves (39.9kg) than in-vivo calves (25.5kg p<0.05). Recipients of in-vivo blastocysts (n=9) had all normal delivery and all of their calves survived on the 60$^{th}$ day from the birth. Recipients of IVF blastocysts (n=7) had all normal delivery but one of their calves died on the 48$^{th}$ day from the birth. Among recipients of NT blastocysts (n=5), three had normal delivery and two had Caesarean section. Among calves born through normal delivery (n=3) two died just after delivery but those born through Caesarean section all survived on the 60th day from the birth.

Production of cloned Rabbits Embryos and Offsprings by Nuclear Transplantation using In Vitro Matured Oocytes in Rabbits (토끼의 체외배양 난자를 이용한 핵이식으로 복제수정란 및 복제산자의 생산)

  • 박충생;전병균;이경미;윤희준;이효종;곽대오;최상용
    • Journal of Embryo Transfer
    • /
    • v.10 no.1
    • /
    • pp.65-72
    • /
    • 1995
  • The purposes of this study were to produce cloned rabbit embryos and offsprings by nuclear transplantation(NT) using in vitro matured oocytes as nuclear recipient cytoplasm and to determine the effect of frozen nuclei donor embryos on the production efficiency of cloned embryos. The 8cell embryos were collected from the mated does by flushing oviducts with Dulbecco's phosphate buffered saline containing 10% fetal calf serum(FCS) at 40 hours after hGG injection. A portion of collected embryos were preserved at 4$^{\circ}C$ for 24 hours and a portion of them were frozen by vitrification method. The embryos used for donor nuclei were synchronized in the phase of Gi /S transition. The in vitro matured oocytes were used as recipient cytoplasm following removing the nucleus and the first polar body. The synchronized blastomeres from fresh, cooled or frozen embryos were injected into the enucleated oocytes by micromanipulation and were electrofused by electrical stimulation of three pulses for 60 $\mu$sec at 1.0 W /cm in 0.28 M mannitol solution. The fused oocytes were co-cultured with a monolayer of rabbit oviductal epithelial cells in M-199 solution containing 10% FCS for 120 hours at 39$^{\circ}C$ in a 5% $CO_2$incubator. Following in vitro culture of the NT embryos to blastocyst stage, they were stained with Hoechst 33342 dye for counting the number of blastomeres by fluorescence microscopy. The nuclear transplant embryos developed in vitro to 2- to 4-cell stage were transferred into the oviducts of synchronized recipient does. The results obtained were summarized as follows: 1. The fusion rates of the blastomeres from fresh, cooled and frozen embryos with the in vitro matured and enucleated oocytes were 100, 95.8 and 64, 3%, respectively. 2. Development in vitro to blastocyst was significantly(p<0.05) different between the cloned embryos with the blastomeres from fresh, cooled or frozen embryos as 39.0, 20. 9 and 15.7%, respectively. 3. The mean numbers of cell cycle per day during in vitro culture of cloned embryos blastomeres from fresh, cooled or frozen embryos was 1.31, 1.29 and 1.16, respectively. 4. A total of 77 nuclear transplant embryos were transferred into 6 recipient does, of which two offsprings were produced from a foster mother 31 days after embryo transfer.

  • PDF